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Abstract The aim of this paper is to provide the rationale driving the design of the static reflection
facility proposed in P0194 [9] (and its predecessors N3996 [3], N4111 [4], N4451 [6] and N4452 [5]),
to enumerate and describe its potential use-cases and to keep a written record of its evolution. It
also answers questions frequently asked in regard to the proposal.
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1 Introduction

This paper accompanies the P0194Rx papers which we want to keep brief, technical and to the
point and which will eventually result in the final wording to be included into the standard if this
proposal is accepted.

We are writing this paper with several goals in mind:
e To define and explain the reflection-related terminology.

e To keep a written record of the rationale behind the design of the proposed static reflection
facility.

e To keep the answers to the frequently asked questions about the decisions we’ve made in this
proposal in one place so that we can avoid having to write them over and over from scratch

in various discussions?.

e To enumerate and describe the use cases for the various features which we included in the
proposal.

e To provide concrete examples of usage.

L Also to help us remember what the answers were.
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e To discuss the possibilities of the evolution of reflection in the future.

The text of this paper includes several revised, updated and extended parts from the previous
papers: N3996, N4111, N4451 and N4452.

1.1 Terminology

In order to avoid confusion about terminology, this section provides definitions for several important
terms used throughout the text of the paper and explains what we mean when using them in the
context of this paper.

1.1.1 Base-level, meta-level
When speaking generally, the meta-level is some higher level of abstraction conceptually describing
a lower, base-level which is the primary subject of our endeavors.

In the context of this paper the base-level is the structure of a C++ program. The meta-level is
an abstraction partially describing that structure, mainly the declarations of the program.

1.1.2 Metadata

Metadata is generally a piece of data conceptually describing some other, primary data.

In the context of this paper, metadata is data providing information about the base-level structure
of a program. Static metadata is metadata which can be manipulated or reasoned about at compile-
time by the compiler.

The metadata itself can have its own structure. For example metadata describing the base-level
declaration of a class from a C++ program includes;

e the name of the class,

e its scope,

e list of its base classes,

e list of data members,

e list of nested types like typedefs, classes and enums,
e the elaborted type specifier,

e source location information,

e etc.

1.1.3 Metaprogramming

Metaprogramming is a kind of programming with the ability to treat and manipulate other programs
as data, so both the input and the output of a metaprogram is usually a program. The language in
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which metaprograms are written is called the metalanguage and it can be a different or the same
language as the one used to write the primary program.

C++ metaprogramming can be done both in an external language?, in a C++ compiler plug-in, or
in C++ itself.

When done directly in C++, metaprogramming usually takes the form of a source code generator?,
or the form of preprocessor or template metaprogramming.

In template metaprogramming we use C++’s type system as a standalone functional programming
language “interpreted” by a C++ compiler, with “variables” being represented by types (or compile-
time constants), “data structures” by instantiations of templates, “subroutines” by class templates
or template aliases, and algorithms or “programs” by compositions of the above.

Unless stated otherwise when we say “metaprogramming” in the following text, we mean template
metaprogramming.

1.1.4 Reflection
In the context of computer science the term refiection refers to the ability of a program to examine
and possibly modify its own structure and/or behavior.

When combined with metaprogramming, this can include modification of the existing or the defi-
nition of new data structures, doing changes to algorithms or changing the way a program code is
interpreted?.

For the purpose of this paper reflection is the process of obtaining metadata. In the future the
meaning can be expanded to include modification of the program in ways exceeding the capabilities
of current template metaprogramming.

1.1.5 First-class object, second-class object
Also known as first-class — citizen, type, entity or value, in the context of programming language
design is an entity that satisfies the following:

e Can be stored in a named variable or a data structure.

e Can be passed as an argument to a subroutine.

e Can be returned as a result of a subroutine.

e Has an intrinsic identity making the entity unique and distinguishable.

Since this paper deals with compile-time static reflection and its use in template metaprogramming,
we will be talking about first- or second- class citizens in this regard. For the purpose of this paper
a first-class object is something that we can distinguish and reason about at compile-time and what
can be passed around as “data” in metaprograms — something that can be a template parameter.

This means that a type or a template is for our purposes a first-class object:

2For example a C++ code generator written in Python or Bash.
3Like Qt’s MOC.
4Mostly in interpreted languages.
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// compile-time "wvalues"
struct value_a { };
struct value_b { I};

// a compile-time "subroutine"
template <typename Param>
struct identity

{
typedef Param result;

};

// "values" are equality comparable and they are distinguishable
assert(!std::is_same_v<value_a, value_b>, "");

// and can be used for overloading
assert(!std::is_same_v<identity<value_a>, identity<value_b>>, "");

// they can be stored in named "variables" ...
using x = value_a;

// ... while maintaining their identity
assert(std::is_same_v<value_a, x>, "");

// they can be passed as parameters to subroutines
identity<value_a>;

identity<value_b>;

// they can be returned from subroutines

using y = identity<value_a>::result;
using z = identity<value_b>::result;

// ... while still maintaining their tdentity
assert(std::is_same_v<value_a, y>, "");
assert(std::is_same_v<value_b, z>, "");

// and still being distinguishable
assert(!std::is_same_v<y, z>, "");

On the other hand a namespace, a typedef or a template parameter do not have some or any of
these properties.

// other entities
namespace std { }
namespace foo = std;
using bar = unsigned;
using baz = unsigned;

template <typename Param>
struct identity
{

typedef Param result;



D0318RO0 — Static reflection

Rationale, design and evolution.

};

// they are not distinguishable

std: :is_same_v<bar, baz>;

// and cannot be used for overloading
std::is_same_v<identity<bar>, identity<baz>>;

// or not even comparable
std::is_same_v<std, foo>;

// or they cannot be passed as arguments to subroutines
identity<std>;
identity<foo>;

// mor returned as a result
namespace y = identity<foo>::result;

// those which can be returned ...

using z = identity<bar>::result;

// ... do not maintain their unique tidentity
std: :is_same_v<z, baz>;

From the above follows, that a second-class object is everything else that is not a first-class object.

1.1.6 Reification

Generally speaking reification or “thingification”?, is making something real, bringing it into being
as an entity with its own identity, or making something concrete.

In regard to programming languages, reification is often defined as making a concept in the language
a first-class object. So in the context of C++ template metaprogramming a type is reified, but a
namespace or a specifier is not.

2 Motivation

Generic programming and metaprogramming supported by reflection can be valuable tools in the
implementation of an extensive range of various use cases or programming patterns, including but
not limited to:

e serialization or conversion of data from the native C++ representation into a standard or
custom, text-based or binary format like XML, JSON, XDR, ASN1, etc.,

e (re-)construction of instances of both atomic and structured types from external data repre-
sentations (like those listed above), or from the data stored in a relational database, or from
data entered by a user through a user interface, or queried through a web service API,

e automated implementation of hash functions for structured types,

5From latin “rei”, the dative form of “res” — a thing.
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e automated generation of user interface elements,

e automatic generation of a relational schema from the application object model and object-
relational mapping (ORM),

e support for scripting,

e support for remote procedure calls (RPC) / remote method invocation (RMI),

e inspection and manipulation of existing objects via a user interface or a web service,
e visualization of objects or structured data and their relationships,

e automatic or semi-automatic implementation of certain software design patterns, for example
the Object factory pattern,

e implementation of cross-cutting aspects like debugging, logging, profiling, access control, etc.,
e implementation of source code generators.
Some of the use cases listed above are described in more detail in section 4.

There are several approaches to the implementation of the mentioned functionality. The most basic,
straightforward and also usually the most error-prone is manual implementation. Many of the tasks
listed above are inherently repetitive and basically require to process and organize programming

language elements® in a very uniform way which could be transcribed into a metaprogram’.

This leads to the second, heavily used approach: preprocessing and parsing of the program source
text by a usually very specific external program like, a documentation generation tool, an interface
definition language compiler for a RPC/RMI framework, a web service interface generator, a rapid
application development environment with a form designer, etc., resulting in additional program
source code, which is then integrated into the project and compiled into the final application binary.

This approach has several problems. First, it requires the external tools which may not fit well
into the build system or may not be portable between platforms or be free; second, such tools are
task-specific and many of them allow only a limited, if any, customization of the output and third,
there is a lot of repeated code related to the parsing, the representation and the manipulation of
the input program source.

Another way to automate these tasks is to use reflection and metaprogramming. Metaprogramming
is the tool for transforming one program into another based on some meta-algorithm and reflection
provides the input data for that algorithm directly from the compiler without the need for an
external source code parser.

For example if we want to log the execution of a function, reflection may be used as a source of
metadata:

template <typename T>
T min(const T& a, const T& b)
{
log() << "function: min<"
<< get_name_v<get_aliased_m<reflexpr(T)>>
<< > (Y

Stypes, structures, containers, functions, constructors, class member variables, enumerated values, etc.
"with varying level of complexity



D0318RO0 — Static reflection

Rationale, design and evolution.

<< get_name_v<reflexpr(a)> << ": "

<< get_name_v<get_aliased_m<get_type_m<reflexpr(a)>>>
<< "= "< g

<< get_name_v<reflexpr(b)> << ": "

<< get_name_v<get_aliased_m<get_type_m<reflexpr (b)>>>
<< " =" << D

<< ")" << std::endl

return a<b7a:b;

}

Calling the min function:

double m = min(12.34, 23.45);
would produce the following log entry:

function: min<double>(a: double = 12.34, b: double = 23.45)

3 Design

3.1 Basic overview

As the introduction briefly mentions, the metadata reflecting base-level program declarations has its
own structure. One way to maintain this structure and to organize the individual, but related pieces
of metadata reflecting for example the structure of a class is to compose them into metaobjects.

In P0194R0 we propose to add support for compile-time reflection to C++4 by the means of
lightweight, compiler-generated types — metaobjects, providing metadata describing various base-
level program declarations.

The metaobjects exist only at the type-level, they do not have any constructors or members and
cannot be instantiated®.

Their sole purpose is to give a first-class identity to the reflected entity”®, so that we can pass it
as an argument or a return value in metaprograms and to separate the reflection of a declaration
from the querying of metadatal!®.

We introduce a new reflection operator — reflexpr which returns a metaobject type reflecting its
operand.

For example:

typedef reflexpr() meta_global_scope;

typedef reflexpr(int) meta_int;

typedef reflexpr(std) meta_std;

typedef reflexpr(std::size_t) meta_std_size_t;

8Tt’s not possible to create a run-time variable of metaobject type.
9Namespace, typedef, function, parameter, specifier, etc.
10Which will happen very often in the more complex use cases
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typedef reflexpr(std::thread) meta_std_thread;
typedef reflexpr(std::pair) meta_std_pair;

Since there are many different kinds of base-level reflectable declarations, the metaobjects reflecting
them are modeling various metaobject concepts. The metaobjects can be inspected by metaobject
traits, which indicate whether a metaobjects has or has not a particular property;

static_assert(meta: :has_name_v<reflexpr(std)>, "");
static_assert(meta: :has_scope_v<reflexpr(int)>, "");
static_assert(meta::is_scope_v<reflexpr(std::string)>, "");
static_assert(meta::is_alias_v<reflexpr(std::string::size_type)>, "");

or if is falls into a particular category:

static_assert(meta::is_global_scope_v<reflexpr()>, "");
static_assert(meta::is_namespace_v<reflexpr(std)>, "");
static_assert(meta::is_type_v<reflexpr(int)>, "");
static_assert(meta::is_class_v<reflexpr(std::string)>, "");
static_assert(meta::is_typedef_v<reflexpr(std::string::size_type)>, "");

The individual pieces of metadata can be obtained from a metaobject by using one of the class
templates which comprise its interface.

Some of this metadata like the class name or number of base classes is provided as compile-time
constant values, some as base-level types, like the original type of the class and some in the form of
other metaobjects, like the metaobject reflecting the scope, the sequence of metaobjects reflecting
the members, etc.:

using meta_str = reflexpr(std::string);

get_name_v<meta_str>; // a compile-time constant string
get_reflected_type_t<meta_str>; // a base-level type: std::string
get_scope_m<meta_str>; // another metaobject reflecting the scope

P0194R0 also defines the initial subset of metaobject concepts which we assume to be essential and
which will provide a good starting point for future extensions.

3.2 Design considerations

The proposed static reflection facility has been designed with the following considerations and goals
in mind. Note that some of the principles listed here apply only to the whole reflection facility as
it is envisioned to look in the future, not to the initial, limited subset from P0194R0.

3.2.1 Completeness and reusability

The metadata provided by reflection is reusable in many situations and for many different purposes.
It does not focus on nor is limited only to the simple and immediately obvious use cases. New use
cases which we are not aware of at this moment, may emerge in the future. So having or not having
a compelling use case for a particular feature is a factor in the decision whether to include it, but
it should not be the most important one.

10
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When completed, the proposed reflection facility will provide as much useful metadata as possible,
reflecting various base-level declarations like types, namespaces, variables, functions, templates,
specifiers'' and will provide access to scope members, base classes, etc.

This will make the compiler-assisted reflection'? a useful tool in a wide range of scenarios during

both compile-time and run-time and under various paradigms'? depending on the application needs.

3.2.2 Consistency

The reflection facility as a whole is consistent, instead of being composed of several ad-hoc,
individually-designed parts. This makes its interface more tidy, coherent and easier to learn.

3.2.3 Encapsulation

The metadata is not exposed directly to the user by many different compiler built-ins, operators or
special expressions. Instead it is be accessible through conceptually well-defined interfaces, inspired
by the existing type-traits, already present in the C++ standard template library.

3.2.4 Stratification

Reflection is non-intrusive and the metaobjects are separated from the base-level language decla-
rations which they reflect.

This is achieved by using the reflection operator which hides most of the “magic”, isolates reflection
from the rest of the language, for example by allowing to pass expressions not valid elsewhere as
operands.

Furthermore the metaobjects giving a first-class identity to declarations which are only second-class
in base-level C++, allow to partially “reify” namespaces, specifiers, etc. without actually making
them first-class citizens. This in turn allows to pass their reflections around metaprograms.

3.2.5 Ontological correspondence

The meta-level corresponds to the ontology of the base-level C++ language which it reflects. This
basically means that all important existing language features'? will eventually be reflected by
appropriate metaobjects, but new ones not having an equivalent in the base-level language® will
not be invented.

Ontological correspondence is one of the main factors driving the definition of the individual metaob-
ject concepts and the design of their interfaces.

1T ike constness, storage-class, access, etc.

12Either by itself or serving as the foundation for other standard or third-party libraries.
30Object-oriented, functional, etc.

MWithin reason, we certainly do not want to reflect every token in a C++ program.

15 At least conceptually.

11
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3.2.6 Efficiency

The proposed reflection is fine grained as much as possible. Things that are not needed for a
particular application, are not compiled into its program code nor result in increased compiler
footprint or compilation times.

The proposed reflection facility makes a completely lazy implementation of metaobjects possible.
Metaobjects are created only when requested and the reflection operator is able to generate very
lightweight types providing internal links back to the reflected declaration. The actual metadata'® is
materialized only when requested by the programmer via the templates which act as the metaobject
interface.

3.2.7 Ease of use

Although reflection-based metaprogramming should allow to implement very complicated meta-
algorithms, we try to adhere to the principle that things should be kept as simple as possible, but
not simpler!”.

This can be achieved by having a solid and powerful compiler-assisted reflection as the foundation
and by implementing a simplifying facade on top of it once the common use-cases are identified.

3.2.8 Integration

The proposed reflection facility is easily usable with the existing introspection utilities'® already
provided by the standard library and by other third-party libraries.

3.2.9 Extensibility
It is important be able to gradually add new features and to allow reflecting new declaration kinds in
the future without introducing breaking changes. The metaobjects make this goal easily achievable.

If we want to add reflection of previously unsupported declaration kind, for example the reflection
of specifiers, we define a new metaobject concept like Meta-Specifier and its classification trait.

namespace meta {
template <Object T>

struct is_specifier : integral_constant<bool, ... > { };

template <Object T>
constexpr bool is_specifier_v = is_specifier<T>::value;

template <Object T>
concept bool Specifier = Named<T> && is_specifier_v<T>;

16T jke a compile-time string containing the identifier, the list of metaobjects reflecting class members or the scope
of a declaration, etc.

17 Credits to whoever said that.

18Tike the type-traits or typeid and std: :type_info.

12
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} // namespace meta

Then it is necessary to extend the list of expressions which can appear as operands to reflexpr to
include specifiers, so that the following is valid code:

using meta_static = reflexpr(static);
using meta_public = reflexpr(public);

To extend the interface of an existing metaobject by adding a new operation returning for example
the elaborated type specifier of a class we need to add a new template like:

namespace meta {

template <Class T>
struct get_elaborated_type_specifier
{
typedef /* generated by the compiler */ type;
I

} // namespace meta
Then we can use the new features:

class foo { I};

static_assert(meta: :reflects_same_v<
meta: :get_elaborated_type_specifier_m<reflexpr(foo)>,
reflexpr(class)

>’ IIII);

3.3 Compile-time vs. run-time reflection

Run-time, dynamic reflection facilities may seem more readily usable, but with the increasing pop-
ularity of compile-time metaprogramming, the need for compile-time introspection'® and reflection
also increases.

Also, if compile-time reflection is well supported it is relatively easy to implement run-time or even
dynamically loadable reflection on top of it. The opposite is not true: One cannot use run-time
metaobjects or the value returned by their member functions as template parameters or compile-
time constants.

From the performance point of view, algorithms based on static meta-data offer much more possi-
bilities for the compiler to do optimizations.

Thus, taking shortcuts directly to run-time reflection, without compile-time support has obvious
drawbacks.

Yalready taken care of by type_traits

13
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3.4 Design evaluation

3.4.1 The good

The proposed reflection facility?:

covers many different use cases,

is fairly powerful and expressive,

is non-intrusive,

is fine-grained,

allows for efficient implementations,

allows to manipulate and reason about all provided metadata at compile-time,
gives the metadata a structure by arranging it into metaobjects,

makes the metaobjects first-class entities allowing to pass representations of second-class base-

level language entities around metaprograms as arguments and return values and store them

in named “variables”?!,

can serve as the foundation for other, compile-time or run-time reflection utilities implement-
ing other interfaces or fagades aimed at various paradigms or use cases,

contains and isolates all the required changes within the reflection operator,
limits the impact on existing code by adding only a single reserved keyword,

does not require any other changes to the core language, especially no new rules for template
parameters.

3.4.2 The bad

This proposal requires the addition of a new operator — reflexpr which may cause conflicts with
identifiers in existing code.

For what it’s worth, we have performed a quick analysis on 994 third-party, open-source repositories
of C++ projects, hosted on http://github.com/??, where we counted identifiers in the C++ source
files.

We have found 646 313 149 instances of 7903 042 distinct words matching the C++ identifier rules.
We did not find any occurrence of “reflexpr”.

20

assuming it is fully completed

21We cannot stress the importance of this feature enough.
22The main branches of original repositories, not forks.

14
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3.4.3 The ugly

The complexity of the proposal?® makes it too verbose for certain simple use cases or it may be
difficult to learn for beginners.

On the other hand we do not want to trade its usefulness for “simplicity” and as already said
simplifying wrappers aimed at trivial use cases can and will be devised and added to the standard
library. See also the discussion in the FAQ section.

Representing the metaobjects as types may be suboptimal in some simple use cases. For example:
std: :string(std: :meta: :get_name_v<reflexpr(T)>);

However, the compilers already are doing many other AST transformations, optimizations and
elisions, and their developers have many tricks at their disposal to make the above as efficient as
say:

std: :string(operator_get_name_of(T));

4 Use cases and examples

Note that some of the examples listed in this section use features which are not part of the initial
reflection specification, but which are planned as future additions.

4.1 Portable (type) names

One of the notorious problems of std: :type_info is that the string returned by its name member
function is not standardized and is not even guaranteed to return any meaningful, unique human-
readable string, at least not without de-mangling, which is platform specific. Furthermore the
returned string is not constexpr and cannot be reasoned about at compile-time and is applicable
only to types. One other problem with typeid that it is not always aware of typedefs. In some
cases we would like to obtain the alias name, instead of the “real” name of a type or a class member
or function parameter.

The ability to uniquely map any type used in a program to a human-readable, portable, compile-
time string has several use-cases described in this paper.

The Meta-Named concept reflects named language constructs and provides the get_name oper-
ation returning their basic name without any qualifiers or decorations. This can be with the help
of metaprogramming turned into a fully-qualified name.

4.2 Logging

When tracing and logging the execution of functions?® it is sometimes desirable to also include the
names of the parameter types or even the names of the parameters and other variables.

The best we can do with just the std: :type_info is the following:

Zstemming from the complexity of the base-level language
24egpecially template functions
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#1f __PLATFORM_ABC__

std::string demangled_type_name(const charx) { /* implementation 1 */ }

#else vf __PLATFORM_MNO__

std: :string demangled_type_name(const char*) { /* implementation 2 */ }

#else vf __PLATFORM_XYZ__

std: :string demangled_type_name(const char*) { /* implementation N */ }

#else
std: :string demangled_type_name(const char* mangled_name)
{
// don’t know how to demangle this; let’s try our luck
return mangled_name;
}
#endi f

template <typename T>
T min(const T& a, const T& b)

{
log() << "min<"
<< demangled_type_name (typeid(T) .name())
<< ||>(II << g << II, LIPS b << II) = ll;
T result = a<b7a:b;
log() << result << std::endl;
return result;
}

Which may or may not work, depending on the platform.
With the help of reflection we can do:

template <typename T>
T min(const T& a, const T& b)

{
log() << "min<"
<< get_name_v<reflexpr(T)>
<< ll>(ll << a << ||, n << b << II) = Il;
T result = a<b7a:b;
log() << result << std::endl;
return result;
}

The __PRETTY_FUNCTION

macro generated by the compiler could be also used in this case, but

the format of the string which this macro expands into is not customizable (which may be necessary

for logs formatted in XML, JSON, etc.
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A more elaborate output containing also the parameter names, type names and values can be
achieved by using reflection:

template <typename T>
T min(const T& a, const T& b)

{
log(Q) << "function: min<"
<< get_name_v<get_aliased_m<reflexpr(T)>>
<< u>(n
<< get_name_v<reflexpr(a)> << ": "
<< get_name_v<get_aliased_m<get_type_m<reflexpr(a)>>>
<< n —n << a
<< get_name_v<reflexpr(b)> << ": "
<< get_name_v<get_aliased_m<get_type_m<reflexpr(b)>>>
<K< " = o« b
<< ")" << std::endl
T result = a<b7a:b;
log(Q) << get_name_v<reflexpr(result)> << ": "
<< get_name_v<get_aliased_m<get_type_m<reflexpr(result)>>>
<< " = " << result << std::endl;
return result;
3
Calling
double x = 12.34;
double y = 23.45;

double z = min(x, y);
would produce the following log entries:

function: min<double>(a: double = 12.34, b: double = 23.45)
result: double = 12.34

It is true that the lines:

<< get_name_v<reflexpr(a)> << "
<< get_name_v<reflexpr(b)> << " =

could be replaced by preprocessor stringization

<< BOOST_PP_STRINGIZE(a) << ": "
<< BOOST_PP_STRINGIZE(b) << ": "

or just hard coded strings, like

<< lla: n
<< ||b: n

but the compiler would not force the programmer to change the macro parameter or the content
of the string the if the parameters a and b were renamed for example to first and second. On
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the other hand, it would enforce the change if reflection was used.

Furthermore, with the Meta-Function concept and the context-dependent reflection features,
even more would be possible; The function name and even the parameter names can be obtained
from reflection and encapsulated into a function.

template <typename MetaFunction, typename ... P>
void log_function_exec(MetaFunction, const std::tuple<P&...>& params)
{
log() << "function: "
<< get_name_v<MetaFunction>
<< std::endl;

// obtain the MetaParameter(s) from the MetaFunction
// and print them pairwise with the wvalues from params.
for_each<get_parameters<MetaFunction>>(

[&params] (auto meta_param)

{
using MP = decltype(meta_param): :type;
log() << get_name_v<MP> << ": "
<< std::get<get_position_v<MP>>(params)
<< std::endl;
}

)

template <typename T>
T min(T a, T b)
{
log_function_exec(reflexpr(this::function), std::tie(a, b));

J* ... %/

template <typename T>
T max(T a, T b)
{
log_function_exec(reflexpr(this::function), std::tie(a, b));

J* ... %/

template <typename T>

T avg(T a, T b)

{
log_function_exec(reflexpr(this::function), std::tie(a, b));
VLT 4

}

Logging is one of the use cases where typedef reflection is really useful. Consider for example that
we want to log the execution of a function with the following signature:
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std::string::iterator foo(std::string::iterator iter);

The log is much cleaner and informative if it contains the typedef name iterator instead of
const char* on one platform, __normal_iterator<pointer, std::basic_string<char>> on
another and something completely different on yet another. On some platforms the definition
of iterator may even vary between build modes?® which may lead to confusion.

4.3 Generation of common functions
This use case was part of the “targeted use cases” in the committee’s call for compile-time reflection
proposals [10]:

There are many functions that generally consist of boilerplate code, performing some action for each
member of a class. Such functions include equality operators, comparison operators, serialization
functions, hash functions and swap functions.

In other words for arbitrary structured type, for example:

struct S

{
int i;
long 1;
float f;

};

we want to create equality or non-equality comparison function like:

bool S_equal(const S& a, const S& b)

{
bool result = true;
result &= a.i == b.1i;
result &= a.l == b.1;
result &= a.f == b.f;
return result;

}

bool S_not_equal(const S& a, const S& b)

{
bool result = false;
result |= a.i !'= b.i;
result |= a.l !'= b.1;
result |= a.f != b.f;
return result;

}

or a hash function:

std::size_t S_hash(const S& a)
{

2532-bit vs. 64-bit or debug vs. release
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std::size_t result = Ou;

result "= std::hash<int>() (a.i);
result "= std::hash<long>()(a.l);
result "= std::hash<float>()(a.f);
return result;

}

This is one of the many use cases where the for_each function described in section 5.1.2 comes in

handy. The above could be implemented along the lines of:

template <typename T>
struct compare_data_members

{
const T& a;
const T& b;
bool& result;
template <typename MetaDataMember>
void operator() (identity<MetaDataMember>) const
{
auto mem_ptr = meta::get_pointer_v<MetaDataMember>;
result &= a.*mem_ptr == b.*mem_ptr;
X
s

template <typename T>
bool generic_equal(const T& a, const T& b)

{
using metaT = reflexpr(T);
bool result = true;
meta: :for_each<meta::get_all_data_members_m<metaT>>(
compare_data_members<T>{a, b, result}
)3
return result;
}

If the reversible reflection feature described in section 5.3 was implemented then the helper could

take advantage of it:

template <typename T>
struct compare_data_members
{

const T& a;

const T& b;

bool& result;

template <typename MetaDataMem>
void operator() (identity<MetaDataMem>) const

20



D0318RO0 — Static reflection

Rationale, design and evolution.

result &= a.reflexpr(MetaDataMem) == b.reflexpr(MetaDataMem) ;

};
The helper could also be implemented by using a lambda function:

template <typename T>
std::size_t generic_hash(const T& a)

{

std::size_t result = Ou;

meta: :for_each<meta::get_all_data_members_m<reflexpr(T)>>(
[&result,&a] (auto meta_dm)
{
using MetaDataMem = decltype(meta_dm): :type;
using MetaT = meta::get_type_m<MetaDataMem>;

using T = meta::get_reflected_type_t<MetaTl>;
// or T = reflexpr(metal);

auto mem_ptr = meta::get_pointer_v<MetaDataMem>;

result "= std::hash<T>(a.*mem_ptr);
// or ~= std::hash<T>(a.reflezpr(MetaDataMem)) ;

)

return result;

4.4 Enum value to string and vice versa
This is another use case from the “targeted use cases” in the committee’s call for compile-time
reflection proposals [10].

The goal is to automate the implementation of functions which for a given enumeration value,
return the name of the enumeration value:

enum class E

{
a, b, ¢, d, e, £
3
string E_to_string(E value)
{
switch(value)
{

case E::a: return "a";
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}

}

case E::b: return "b";
case E::c: return "c";
case E::d: return "d";
case E::e: return "e";
case E::f: return "f";

return {7};

or the other way around:

E string to_E(const string& name)

{

¥

if (name == "a") return E::a;
if (name == "b") return E::b;
if(name == "c") return E::c;
if (name == "d") return E::d;
if(name == "e") return E::e;
if (name == "f") return E::f;

// or throw here
return {};

As in the previous use case, the for_each function comes in handy for both the enum_to_string:

template <typename Enum>
struct enum_to_string_helper

{

};

Enum value;
string& result;

template <MetaEnumValue>
bool operator() (identity<MetaEnumValue>) const

{

if (value == meta::get_constant_v<MetaEnumValue>)
{
result = meta::get_name_v<MetaEnumValue>;
return true; // found
b
return false; // not found yet

template <typename Enum>

string enum_to_string(Enum enum_value)

{

string result;

using MetaEnum = reflexpr (Enum) ;
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// traverse the members until the function returns true
meta::for_each_until<meta: :get_enum_members_m<MetaEnum>>(
enum_to_string helper<Enum>{enum_value, result}

)

return result;
}

and the string_to_enum function:

template <typename Enum>
struct string_to_enum_helper

{
const string& name;
Enum& result;
template <MetaEnumValue>
bool operator() (identity<MetaEnumValue>) const
{
if (name == meta::get_name_v<MetaEnumValue>)
{
result = meta::get_constant_v<MetaEnumValue>;
return true; // found
3
return false; // not found yet
b
s

template <typename Enum>
Enum string_to_enum(const string& enum_name)

{
Enum result;
using MetaEnum = reflexpr (Enum);
meta::for_each_until<meta::get_enum_members_m<MetaEnum>>(
string_to_enum_helper<Enum>{enum_name, result}
)3
return result;
}

Again a lambda could be used as the helper and having the “reversible reflection” feature would

come in handy:

template <typename Enum>
Enum string to_enum(const string& enum_name)

{

Enum result;
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meta: :for_each_until<meta::get_enum_members_m<reflexpr (Enum)>>(

[£enum_name, &result] (auto meta_ev)

{
using MetaEnumValue = decltype(meta_ev): :type;
if (enum_name == meta::get_name_v<MetaEnumValue>)
{
result = reflexpr(MetaEnumValue);
return true;
+
return false;
}

)

return result;

4.5 Simple serialization

We need to serialize instances of assorted classes into a structured external format like XML, JSON,
XDR or even into a format like Graphviz dot for the purpose of creating a visualization of a static

class or dynamic object hierarchy or graph.
Reflection makes this task trivial:

#include <reflexpr>
#include <iostream>

template <typename T>
std: :ostream& value_to_json(std::ostream& out, const T& v);

template <typename ... T>
void eat(T ... ) { }

template <typename Metaobjects, std::size_t I, typename T>
int field_to_json(std::ostream& out, const T& v)
{
typedef std::meta::get_element_m<Metaobjects, I> meta_ F;
if(I > 0) out << ", ";
out << ’"’? << gstd::meta::get_name_v<meta_F> << "\'": ";

value_to_json(out, (v.*std::meta::get_pointer_v<meta_F>));

return O;
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template <typename Metaobjects, std::size_t ... I, typename T>
void fields_to_json(std::ostream& out, const T& v, std::index_sequence<I...>)
{

eat (field_to_json<Metaobjects, I>(out, v)...);

template <typename MO, typename T>
std: :ostream& reflected_to_json(std::ostream& out, const T& v, std::true_type)
{

Out << H{H;

typedef std::meta::get_all_data_members_m<M0O> meta_DMs;
fields_to_json<meta_DMs>(
out, v,
std: :make_index_sequence<
std: :meta::get_size_v<meta_DMs>
>0
)3

out << H}H;
return out;

template <typename MO, typename T>
std: :ostream& reflected_to_json(std::ostream& out, const T& v, std::false_type)
{

return out << v;

template <typename T>
std: :ostream& value_to_json(std::ostream& out, const T& v)

{
typedef reflexpr(T) meta_T;
return reflected_to_json<meta_T>(
out, v,
std: :meta::is_class_m<meta_T>()
)5
s

struct point { float x, y, z; };
struct triangle { point a, b, c; };

struct tetrahedron
{
triangle base;
point apex;

};
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int main(void)
{

using namespace std;

tetrahedron t{
{{0.f,0.f,0.f}, {1.£,0.£,0.f}, {0.£,0.f,1.f}},
{0.f,1.£,0.f}

};

std::cout << "{\"t\": ";
value_to_json(std: :cout, t);
std::cout << "}" << std::endl;

return O;

3

The above is an already working code and it produces the following output:

{"t": {“base": {nan: {an: O, llyll: O, . O}, np". {an: 1, nyn: O, o . O}, \
et {qul: O, ||y||: o, non. 1}}, ”apex": {"X"Z O, ||y||: 1’ npn. O}}}

4.6 Cross-cutting aspects

We need to execute the same action or a set of unrelated actions at the entry of or at the exit from
the body of each function from a set of multiple functions meeting some criteria every time one of
them is called.

The actions may be related to logging, debugging, profiling, but also to access control?®, etc.

The condition which selects the functions for which the action is invoked might be something like:
e cach member function of a particular class,
e cach function defined in some namespace,
e cach function returning values of a particular type or having a particular set of parameters,
e cach function whose name matches a pattern,
e each function declared in a particular source file,
e and so on and various combinations of the above.

It may not be possible to tell in advance the relations between the aspects and the individual
functions or these relations may vary for different builds or build configurations. Furthermore we
want to be able to quickly change the assignment of actions to functions in one place instead of
going through the whole project source which may consists of dozens or even hundreds of files.

We want for example temporarily enable logging of the entry and exit of each member function of
class foo, or we need to count the number of invocations of functions defined in the bar namespace
with names not starting with an underscore, or we want to throw the not_logged_in exception at

26Not allowing users to execute operations for which they are not authorized.
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the entry of each member function of class secure if the global function user_logged_in returns

false.

Without reflection something like this could be implemented in the following way:

class logging_aspect

{
public:
template <typename ... P>
logging_aspect(const char* func_name, P&&...)
{
// log entry to std::clog
}
“logging_aspect (void)
{
// log exit
}
s
class profiling_aspect
{
VAR 74
s

class authorization_aspect
{
public:
template <typename ... P>

authorization_aspect(const char* func_name, P&&...)

{

if (contains(func_name, "secure"))

{

if(!::is_user_logged_in())

{

throw not_logged_in(func_name);

};

template <typename RV, typename
class func_aspects
: logging_aspect
, profiling_aspect
, authorization_aspect
/¥ ... ete. ... %/
{
public:

. P>
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func_aspects(
const char* name,
const charx*x file,
unsigned line,
P&&... args
): logging_aspect(name, file, line, args...)
, profiling_aspect(name, file, line, args...)

, authorization_aspect(name, file, line, argc...

/* ... ete. ... %/
{1}
s
template <typename RV, typename ... P>

func_aspects<RV, P...>

make_func_aspects(
const char* name,
const charx*x file,
unsigned line,
P&&. . .args

)3

void funcl(int a, int b)

{
auto _fa = make_func_aspects<void>(
__func__,
__FILE__,
__LINE__,
a, b
);
/* function body */
}

double func2(double a, float b, long c)
{

auto _fa = make_func_aspects<double>(

__func__,
__FILE__,
__LINE__,
a, b, c

)3
/* function body */
namespace foo {

long func3(int x)
{

28



D0318RO0 — Static reflection

Rationale, design and evolution.

auto _fa =
__func__
__FILE_
__LINE_
X

);

make_func_aspects<long>(

-

/* function body */

} // namespace

foo

Obviously this is very repetitive and it can get quite tedious and error-prone to supply all this
information to the aspects in each function manually. Also if the signature or the name of the
function changes the construction of the func_aspects instance must be updated accordingly.
With the help of reflection things can be simplified considerably:

template <typename MetaFunction, typename Enabled>
class logging_aspect_impl;

template <typename MetaFunction>
class logging_aspect_impl<MetaFunction, false_type>

{3}

template <typename MetaFunction>
class logging_aspect_impl<MetaFunction, true_type>

logging_aspect_impl(void)

{
public:
{
clog
<<
<<
/*
<<
<<
b
s

get_name_v<MetaFunction>
ll(ll

. 7

II)II
endl;

template <typename MetaFunction>

constexpr bool
is_same_v<

logging_enabled =

reflexpr(std),
get_scope_m<MetaFunction>
> && is_same_v<
std: :string,
get_reflected_type_t<get_result_m<MetaFunction>>

> &&

/* ... etc.

*/
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template <typename MetaFunction>
using logging_aspect =
logging_aspect_impl<
MetaFunction,
logging_enabled<MetaFunction>

template <typename MetaFunction, typename Enabled>
class authorization_aspect_impl;

template <typename MetaFunction>
class authiorization_aspect_impl<MetaFunction, false_type>

{3}

template <typename MetaFunction>
class authorization_aspect_impl<MetaFunction, true_type>

{

public:
authorization_aspect_impl(void)
{
if(!::is_user_logged_in())
{
throw not_authorized(
full_name<MetaFunction>()
)3
}
}

};

template <typename MetaFunction>
struct autorization_enabled
integral_constant<
bool,
is_base_of<
reflexpr(foo: :bar),
get_scope_m<MetaFunction>
> && constexpr_starts_with(
get_name_v<MetaFunction>,
"secure_"
) &&
/* ... ete. ... */

template <typename MetaFunction>
using authorization_aspect =
authorization_aspect_impl<
MetaFunction,
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typename authorization_enabled<MetaFunction>::type

template <typename MetaFunction>
class func_aspects

: logging_aspect<MetaFunction>

, profiling_aspect<MetaFunction>

, authorization_aspect<MetaFunction>

/* ... etc. ... */

{

public:

s

void funcl(int a, int b)

{
func_aspects<reflexpr(this::function)> _fa;
/* function body */

3

double func2(double a, float b, long c)

{
func_aspects<reflexpr(this::function)> _fa;
/* function body */

X

namespace foo {

long func3(int x)

{
func_aspects<reflexpr(this::function)> _fa;
/* function body */

} // namespace foo

In this case the same expression is used in all functions regardless of their name and signature and
the aspects get all the information they require from the metaobject reflecting the function. All
the data obtained from the metaobjects is available at compile-time so various specializations of
the aspect classes can be implemented as required.

This same technique could also be used with instances of classes:

template <typename MetaClass>
class class_aspects
: logging_aspects<MetaClass>
/* ... etc. ... */
{
public:
class_aspects(get_reflected_type_t<MetaClass>* that);
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+;
class clsl
{
private:
int memberi;
/% ... other members ... */
class_aspect<reflexpr(this::class)> _ca;
public:
clsi(void)
: member1(...)
, _ca(this)
{12
+;

Class aspects like these could also be used for logging, monitoring of object instantiation, resource
leak detection, etc.

4.7 Implementing the factory pattern

The purpose of the Factory pattern is to separate its caller, who requires a new instance of a Product
type, from the details of this instance’s construction. The caller only supplies the input data to the
factory and collects the new instance. There are several aspects that need to be considered when
designing and implementing a factory.

The input data for the construction of an instance of the Product can be stored in an external
representation (an XML fragment, a RDBS database dataset, a JSON document, etc.) or even
entered by the user through a GUI oron the command-line and so on, and would need to be
converted into a native C++ representation. The new instance also might be constructed as a copy
of another already existing prototype instance of the same type sitting in an object pool.

The product may be polymorphic and the exact type may not even be known to the user. It may
have one or several constructors, each of which may require a different set of arguments. It may or
may not have constructors with a specific signature, for example a default constructor.

A default constructor does not make sense for many types and requiring it just because the type
will be used with a factory is problematic?”. Consider for example what a “default” instance of
person or address would look like — it would not have any meaning at all. Thus well-designed
factories should not depend on the presence of constructors with specific signatures.

Furthermore it might be desirable, that the constructor used to construct a particular instance is
picked based on the available input data which is known only at run-time, but not when the factory
is designed and implemented.

Let’s consider the implementation of a factory for a rather simple point class, representing a point
in 3-dimensional space:

struct point

{

27 or even impossible with third-party code
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double _x, _y, _z;

point(double x, double y, double z): _x(x), _y(y), _z(z) {}
point (double w): _x(w), _y(w), _zGw) { }

point (void): _x(0.0), _y(0.0), _z(0.0) { }

point(const point&) = default;

// ... other declarations

};

A naive hand-coded implementation, of a factory constructing points from some Data type (for
example an XML node) might look like this:

class point_factory

{
private:
unsigned pick_constructor(Data data)
{
// somehow examine the data and pick
// the most suttable constructor of the point class
}
double extract(Data data, string param)
{
// somehow ezxtract and convert the value
// of a named parameter from the data
}
public:
point create(Data data)
{
switch(pick_constructor(data))
{
case 0: return point();
case 1: return point(extract(data, "w"));
case 2: return point(
extract(data, "x"),
extract(data, "y"),
extract(data, "z")
)5
default: throw exception(...);
}
}
s
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Now suppose that there is some pool of existing point objects and let’s extend the factory to use
this pool and return copies if applicable:

extern pool_of<point>& point_pool;

class point_factory

{
private:
unsigned pick_constructor(Data data)
{
// same as before but also allow the copy
// constructor to be picked if the data says so
}
double extract(Data data, string param);
public:
point create(Data data)
{
switch(pick_constructor(data))
{
// same as before, but add a new case
// returning copies from the pool
case 3: return point_pool.get(data);
default: throw exception(...);
}
}
s

When looking at the hand-coded factories above, it is obvious that implementing and maintaining?®
factories for several dozens of classes in a larger application is a highly repetitive, tedious and
possibly error-prone process and at least partial automation is desirable.

Factory classes must generally handle several tasks which fit into two distinct and nearly orthogonal
categories:

e Product type-related

— Constructor description — providing the metadata describing the individual constructors,
their parameters, etc.

— Constructor dispatching — calling the selected constructor. with the supplied arguments
which results in a new instance of the product type.

e Input data representation-related
— Input data validation — checking if the input data match the available constructors.

— Constructor selection — examining the input data, comparing it to the metadata describ-
ing product’s constructors and determining which constructor should be called.

2835 the constructed types evolve and change
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— Getting the argument values — determining where the argument values should come from
and getting them:

x Conversion from the external representation — this usually applies to intrinsic C4++
types, but complex types could be converted directly too.

* Recursive construction by using another factory — this usually requires some form of
cooperation between the parent and its child factories and it means that all the tasks
discussed here must be repeated also for the recursively constructed parameter(s).

x Copying an existing instance — for example from an object pool.

Parts from each category can be combined with parts from the other to create new factories which
promotes code re-usability. Factories constructing instances of a single product from various data
representations share the product-related components and factories constructing instances of vari-
ous product types from a single input data representation share the input-data-related parts. This
approach has several advantages like better maintainability or the ability to develop the components
separately and combine them later via metaprogramming.

If the input data for a metaprogram generating the factory class, that is the metadata describing
the Product type?® can be obtained by using compile-time reflection then new factory classes can be
generated automatically for nearly arbitrary type provided that the input data type-related parts
are implemented.

The scope of this paper does not allow to fully explain the implementation of the factory generators.
Please see [8] for further details.

4.8 SQL schema generation

We need to create an SQL/DDL (data definition language) script for creating a schema with tables
which will be storing the values of all structures in namespace C++ foo having names starting
with persistent_:

const char* translate_to_sql(const std::string& type_name)

{
if (type_name == "int")
return "INTEGER";
if (type_name == "float")
return "FLOAT";
/* .. etc. */
}

struct create_table_column_from

{
template <typename MetaMemVar>
void operator() (identity<MetaMemVar>)
{

if ('meta::is_variable_v<MetaMemVar>) return;

Pgpecifically the constructors of Product
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std::cout << meta::get_name_v<MetaMemVar> << " ";

std: :cout << translate_to_sql(
meta: :get_name_v<meta::get_type_m<MetaMemVar>>

)

if (starts_with(get_name_v<MetaMemVar>, "id_"))
{

std::cout << " PRIMARY KEY";
}

std::cout << "," << std::endl;
};

struct create_table_from

{

const char* schema_name;

template <typename MetaClass>
void operator() (identity<MetaClass>)
{

if ('meta::is_class_v<MetaClass>) return;

if (!starts_with(
get_name_v<MetaClass>,
"persistent_"

)) return;

std::cout << "CREATE TABLE "
<< schema_name << "."
<< strip_prefix("persistent_", get_name_v<MetaClass>)
<< "(" << std::endl;

meta: :for_each<meta::get_data_members_m<MetaClass>>(
create_table_column_from()

)
std::cout << ") ;"
};

struct create_schema_from
{
template <typename MetaNamespace>
void operator() (identity<MetaNamespace>)
{
std::cout << "CREATE SCHEMA "
<< get_name_v<MetaNamespace>
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<< "M << std::endl;

meta: :for_each<meta::get_member_types<MetaNamespace>>(
create_table_from{meta: :get_name_v<MetaNamespace>}

);
}
};
int main(void)
{
create_schema_from create;
create(identity<reflexpr(foo)>());
return O;
}

Furthermore reflection could be used to implement actual object-relational mapping, together with

a library like SOCI, ODBC, 1ibpq or similar.

4.9 Structure data member transformations

We need to create a new structure which has data members with the same or similar names as an
original structure, but we need to change some of the properties of the data members, usually their

types.

For example we need to transform a structure like:

struct foo

{
bool b;
char c;
double d;
float f;
string s;

};

into

struct rdbs_table_placeholder_foo

{
column_placeholder<bool>::type b;
column_placeholder<char>::type c;
column_placeholder<double>: :type d;
column_placeholder<float>::type f;
column_placeholder<string>::type s;

};

or create a structure-of-arrays, which was one of the “targeted use cases”

CFP [10]:

struct soa_foo

from the committee’s
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{
vector<bool> bs;
vector<char> cs;
vector<double> sd;
vector<float> fs;
vector<string> ss;
};

The primary obstacle to implementing this use case with the help of reflection is at the moment
the fact that we do not have the ability to create C++ identifiers “programmatically”, at least not
without the help of the preprocessor.

We either have to add the ability to create identifiers from compile-time strings which may be fairly
complicated, or look for some simpler workarounds.

First, let’s say that we have a magic operator, like identifier as described in 5.4.1 , which
“creates” an identifier from a compile-time string, so that for example:

identifier("long") identifier("foo")(int i, int j);
would be equivalent to
long foo(int i, int j);

To copy a name of another declaration from a metaobject reflecting it, we can use the get_name
operation, which returns a constexpr array of chars:

struct bar

{
int foo;

s
using meta_bar_foo = reflexpr(bar::foo);

long identifier(meta::get_name_v<meta_bar_foo>) (int i, int j);

In order to do anything more complex than just copying the identifiers of other declarations we
would need a compile-time string manipulation library implementing for example functions for
compile-time string concatenation, like ct_concat:

int identifier(ct_concat("get_", meta::get_name_v<meta_bar_foo>)) (const bar&);
which would be equivalent to:
int get_foo(const bar&);

With the help of multiple inheritance and the unpack_sequence helper template described in section
5.1.3, we can create a new structure that is nearly equivalent to soa_foo via metaprogramming:

template <typename MetaDataMember>
struct soa_single_member
{
// vector<T> Xs;
vector<meta::get_reflected_type_t<meta::get_type_m<MetaDataMember>>>
identifier(ct_concat(meta: :get_name_v<MetaDataMember>, "s"));
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/* constructors, forwarding parameters to the vector, ... */

};

template <typename ... MetaDataMembers>
struct soa_inherit_all
soa_single_member<MetaDatalMembers>. ..
{ /* constructors forwarding parameters to the inherited soa_single_members */ };

template <typename T>
struct soa
: meta: :unpack_sequence_t<
meta: :get_data_members_m<reflexpr (T)>,
soa_inherit_all
> { /* constructors indirectly forwarding parameters to soa_tinherit_all */ };

using soa_foo = soa<foo>;

If we don’t want to implement the magic operator identifier, we could instead add a new template
named_data_member for Meta-Named metaobjects, described in greater detail in section 5.4.3:

template <MetaNamed MO, typename X>
struct named_data_member;

A specialization of named_data_member for a metaobject reflecting for example foo: : ¢, would look
like this:

template <typename X>
struct named_data_member<reflexpr(foo::c), X>

{
struct type
{
X c;
template <typename ... P>
type(P&& ... p)
c(forward<P>(p)...)
{1}
3
s

We can then combine the specializations of named_data_member<...>::type via multiple inheri-
tance as before:

template <typename MetaDataMember>

using soa_single_member = meta::named_data_member_m<
MetaDataMember,
vector<meta::get_reflected_type_t<meta::get_type_m<MetaDataMember>>>

template <typename ... MetaDataMember>
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struct soa_inherit_all
soa_single_member<MetaDataMembers>. ..
{ /* constructors forwarding parameters to the inherited soa_single_members */ };

template <typename T>
struct soa
: meta: :unpack_sequence_t<
meta: :get_data_members_m<reflexpr (T)>,
soa_inherit_all
> { /* constructors indirectly forwarding parameters to soa_inherit_all */ };

using soa_foo = soa<foo>;

Note that with this workaround we don’t have the ability to change the name of the data members
from c to cs, etc., but the named_data_member template is potentially much simpler to implement.

For a more detailed discussion on the possibilities of identifier generation see section 5.4 and also
section 5.5.

4.10 Simple examples of usage

This section shows several simple, but complete examples of usage already working with the exper-
imental implementation of the initial specification.

4.10.1 Scope reflection

#include <reflexpr>
#include <iostream>

namespace foo {
struct bar
{
typedef int baz;
s
} // namespace foo
typedef long foobar;
int main(void)
{
using namespace std;
typedef reflexpr(int) meta_int;

typedef reflexpr(foo::bar) meta_foo_bar;
typedef reflexpr(foo::bar::baz) meta_foo_bar_baz;
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typedef reflexpr(foobar) meta_foobar;

static_assert(meta: :has_scope_v<meta_int>, "");

static_assert(meta: :has_scope_v<meta_foo_bar>, "");
static_assert(meta: :has_scope_v<meta_foo_bar_baz>, "");
static_assert(meta: :has_scope_v<meta_foobar>, "");

typedef meta::get_scope_m<meta_int> meta_int_s;

typedef meta::get_scope_m<meta_foo_bar> meta_foo_bar_s;

typedef meta::get_scope_m<meta_foo_bar_baz> meta_foo_bar_baz_s;
typedef meta::get_scope_m<meta_foobar> meta_foobar_s;

static_assert(meta::is_scope_v<meta_int_s>, "");

static_assert(meta::is_scope_v<meta_foo_bar_s>, "");
static_assert(meta::is_scope_v<meta_foo_bar_baz_s>, "");
static_assert(meta::is_scope_v<meta_foobar_s>, "");
static_assert(meta::is_namespace_v<meta_int_s>, "");

static_assert(meta::is_global_scope_v<meta_int_s>, "");
static_assert(meta::is_namespace_v<meta_foo_bar_s>, "");
static_assert(!meta::is_global_scope_v<meta_foo_bar_s>, "");
static_assert(meta::is_type_v<meta_foo_bar_baz_s>, "");
static_assert(meta::is_class_v<meta_foo_bar_baz_s>, "");
static_assert(!meta::is_namespace_v<meta_foo_bar_baz_s>, "");
static_assert(meta::is_namespace_v<meta_foobar_s>, "");
static_assert(meta::is_global_scope_v<meta_foobar_s>, "");
static_assert(!meta: :is_class_v<meta_foobar_s>, "");

cout << meta::get_name_v<meta_foo_bar_baz> << endl;
cout << meta::get_name_v<meta_foo_bar_baz_s> << endl;
cout << meta::get_name_v<meta_foo_bar_s> << endl;

return O;

}
Output:

baz
bar
foo

4.10.2 Namespace reflection

#include <reflexpr>
#include <tostream>

namespace foo { namespace bar { } }
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namespace foobar = foo::bar;

int main(void)

{

using namespace std;

typedef reflexpr(foo) meta_foo;
static_assert(is_metaobject_v<meta_foo>, "");
static_assert(!meta::is_global_scope_v<meta_foo>, "");
static_assert(meta::is_namespace_v<meta_foo>, "");
static_assert(!meta::is_type_v<meta_foo>, "");
static_assert(!meta::is_alias_v<meta_foo>, "");
static_assert(meta::has_name_v<meta_foo>, "");
static_assert(meta: :has_scope_v<meta_foo>, "");

cout << meta::get_name_v<meta_foo> << endl;

typedef reflexpr(foo::bar) meta_foo_bar;

static_assert(is_metaobject_v<meta_foo_bar>, "");
static_assert(!meta::is_global_scope_v<meta_foo_bar>, "");
static_assert(meta::is_namespace_v<meta_foo_bar>, "");
static_assert(!meta::is_type_v<meta_foo_bar>, "");
static_assert(!meta::is_alias_v<meta_foo_bar>, "");
static_assert(meta::has_name_v<meta_foo_bar>, "");
static_assert(meta: :has_scope_v<meta_foo_bar>, "");

cout << meta::get_name_v<meta_foo_bar> << endl;

typedef reflexpr(foobar) meta_foobar;
static_assert(is_metaobject_v<meta_foobar>, "");
static_assert(!meta::is_global_scope_v<meta_foobar>, "");

static_assert(meta::is_namespace_v<meta_foobar>, "");
static_assert(!meta::is_type_v<meta_foobar>, "");

static_assert(meta::is_alias_v<meta_foobar>, "");
static_assert(meta: :has_name_v<meta_foobar>, "");
static_assert(meta: :has_scope_v<meta_foobar>, "");

cout << meta::get_name_v<meta_foobar> << " a.k.a ";

cout << meta::get_name_v<meta::get_aliased_m<meta_foobar>> <<

return O;

endl;
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Output:

foo
bar

foobar a.k.a bar

4.10.3 Type reflection

#include <reflexpr>
#include <iostream>

int main(void)

{

}

using namespace std;
typedef reflexpr(unsigned) meta_unsigned;

static_assert(is_metaobject_v<meta_unsigned>, "");
static_assert(meta::is_type_v<meta_unsigned>, "");
static_assert(!meta::is_alias_v<meta_unsigned>, "");

static_assert(is_same_v<
meta::get_reflected_type_t<meta_unsigned>,
unsigned

> llll).

static_assert(meta::has_name_v<meta_unsigned>, "");
cout << meta::get_name_v<meta_unsigned> << endl;

typedef reflexpr(unsigned*) meta_ptr_unsigned;
static_assert(meta: :has_name_v<meta_ptr_unsigned>, "");

cout << meta::get_name_v<meta_ptr_unsigned> << endl;

return O;

Output:

unsigned int
unsigned int

4.10.4 Typedef reflection

#include <reflexpr>
#include <iostream>

namespace foo {
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typedef int bar;
using baz = bar;

} // namespace foo

int main(void)

{
using namespace std;
typedef reflexpr(foo::baz) meta_foo_baz;
static_assert(is_metaobject_v<meta_foo_baz>, "");
static_assert(meta::is_type_v<meta_foo_baz>, "");

static_assert(meta::is_alias_v<meta_foo_baz>, "");

static_assert(is_same_v<
meta::get_reflected_type_t<meta_foo_baz>,

foo: :baz
> ||u).
static_assert(meta: :has_name_v<meta_foo_baz>, "");

cout << meta::get_name_v<meta_foo_baz> << endl;

typedef meta::get_aliased_m<meta_foo_baz> meta_foo_bar;
static_assert(is_metaobject_v<meta_foo_bar>, "");
static_assert(meta::is_type_v<meta_foo_bar>, "");

static_assert(meta::is_alias_v<meta_foo_bar>, "");

static_assert(is_same_v<
meta::get_reflected_type_t<meta_foo_bar>,

foo: :bar
> ||n).
s 3
static_assert(meta: :has_name_v<meta_foo_bar>, "");

cout << meta::get_name_v<meta_foo_bar> << endl;
typedef meta::get_aliased_m<meta_foo_bar> meta_int;

static_assert(is_metaobject_v<meta_int>, "");
static_assert(meta::is_type_v<meta_int>, "");
static_assert(!meta::is_alias_v<meta_int>, "");

static_assert(is_same_v<
meta::get_reflected_type_t<meta_int>,
int

>, llll);
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static_assert(meta: :has_name_v<meta_int>, "");
cout << meta::get_name_v<meta_int> << endl;

return O;
}
Output:

baz
bar
int

4.10.5 Class alias reflection

#include <reflexpr>
#include <tostream>

struct foo { };
using bar = foo;

int main(void)
{

using namespace std;

typedef reflexpr(bar) meta_bar;
static_assert(is_metaobject_v<meta_bar>, "");
static_assert(meta::is_type_v<meta_bar>, "'");
static_assert(meta::is_class_v<meta_bar>, "");
static_assert(meta::is_alias_v<meta_bar>, "");

static_assert(is_same_v<meta::get_reflected_type_t<meta_bar>, bar>,

static_assert(meta: :has_name_v<meta_bar>, "");
cout << meta::get_name_v<meta_bar> << endl;

typedef meta::get_aliased_m<meta_bar> meta_foo;
static_assert(is_metaobject_v<meta_foo>, "");
static_assert(meta::is_type_v<meta_foo>, "y
static_assert(meta::is_class_v<meta_foo>, "");
static_assert(!meta::is_alias_v<meta_foo>, "");

static_assert(is_same_v<meta::get_reflected_type_t<meta_foo>, foo>,

static_assert(meta: :has_name_v<meta_foo>, "");
cout << meta::get_name_v<meta_foo> << endl;

IIII);

nu);
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return O;

}
Output:

bar
foo

Note that meta_bar is both a Meta-Alias and Meta-Class.

4.10.6 Class data members (1)

#include <reflexpr>
#include <tostream>

struct foo

{

private:
int _i, _j;
public:
static constexpr const bool b = true;
float x, y, z;
private:
static double d;

s
int main(void)
{
using namespace std;

typedef reflexpr(foo) meta_foo;

// (public) data members
typedef meta::get_data_members_m<meta_foo> meta_data_mems;

static_assert(is_metaobject_v<meta_data_mems>, "");
static_assert(meta::is_sequence_v<meta_data_mems>, "");

cout << meta::get_size_v<meta_data_mems> << endl;

// 0-th (public) data member
typedef meta::get_element_m<meta_data_mems, 0> meta_data_memO;

static_assert(is_metaobject_v<meta_data_mem0>, "");
static_assert(meta::is_variable_v<meta_data_memO>, "");

static_assert(meta: :has_type_v<meta_data_mem0O>, "");

cout << meta::get_name_v<meta_data_memO> << endl;
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// 2-nd (public) data member
typedef meta::get_element_m<meta_data_mems, 2> meta_data_mem2;

static_assert(is_metaobject_v<meta_data_mem2>, "");
static_assert(meta::is_variable_v<meta_data_mem2>, "");
static_assert(meta: :has_type_v<meta_data_mem2>, "");

cout << meta::get_name_v<meta_data_mem2> << endl;

// all data members
typedef meta::get_all_data_members_m<meta_foo> meta_all_data_mems;

static_assert(is_metaobject_v<meta_all_data_mems>, "");
static_assert(meta::is_sequence_v<meta_all_data_mems>, "");

cout << meta::get_size_v<meta_all_data_mems> << endl;

// 0-th (overall) data member
typedef meta::get_element_m<meta_all_data_mems, 0> meta_all_data_memO;

static_assert(is_metaobject_v<meta_all_data_mem0O>, "");
static_assert(meta::is_variable_v<meta_all_data_memO>, "");
static_assert(meta: :has_type_v<meta_all_data_memO>, "");

cout << meta::get_name_v<meta_all_data_mem0> << endl;

// 3-rd (overall) data member
typedef meta::get_element_m<meta_all_data_mems, 3> meta_all_data_mem3;

static_assert(is_metaobject_v<meta_all_data_mem3>, "");
static_assert(meta::is_variable_v<meta_all_data_mem3>, "");

static_assert(meta: :has_type_v<meta_all_data_mem3>, "");

cout << meta::get_name_v<meta_all_data_mem3> << endl;

return O;

}

This produces the following output:
4

b

y

7

_i

X
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4.10.7 Class data members (2)

#include <reflexpr>
#include <iostream>

struct foo

{
private:
int _i, _j;
public:
static constexpr const bool b = true;
float x, y, z;
private:
static double d;
s
template <typename ... T>
void eat(T ... ) { }

template <typename Metaobjects, std::size_t I>
int do_print_data_member (void)

{
using namespace std;
typedef meta::get_element_m<Metaobjects, I> metaobj;
cout LT << "
<< (meta::is_public_v<metaobj>7"public":'"non-public")
<L n.n
<< (meta::is_static_v<metaobj>7"static":"")
<L n.n
<< meta::get_name_v<meta::get_type_m<metaobj>>
<L n.n
<< meta::get_name_v<metaobj>
<< endl;
return O;
b
template <typename Metaobjects, std::size_t ... I>

void do_print_data_members(std::index_sequence<I...>)

{

eat(do_print_data_member<Metaobjects, I>()...);

template <typename Metaobjects>
void do_print_data_members(void)
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{
using namespace std;
do_print_data_members<Metaobjects>(
make_index_sequence<
meta: :get_size_v<Metaobjects>
>0
)3
3

template <typename MetaClass>
void print_data_members(void)

{
using namespace std;
cout<< "Public data members of " << meta::get_name_v<MetaClass> << endl;
do_print_data_members<meta::get_data_members_m<MetaClass>>();

}

template <typename MetaClass>
void print_all_data_members(void)

{
using namespace std;
cout << "All data members of " << meta::get_name_v<MetaClass> << endl;
do_print_data_members<meta::get_all_data_members_m<MetaClass>>();
3
int main(void)
{
print_data_members<reflexpr(foo)>();
print_all_data_members<reflexpr(foo)>();
return O;
X

This program produces the following output:

Public data members of foo
0: public static bool b

1: public float x

2: public float y

3: public float z

All data members of foo

0: non-public int _i

1: non-public int _j

2: public static bool b
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: public float x
: public float y
: public float z
: non-public static double d

o O b W

4.10.8 Class data members (3)

#include <reflexpr>
#include <iostream>

struct A

{
int a;

s

class B : public A

{

private:
bool b;

I

class C : public B

{

public:
char c;

s

int main(void)

{
using namespace std;
typedef reflexpr(A) meta_A;
typedef reflexpr(B) meta_B;
typedef reflexpr(C) meta_C;
cout << meta::get_size_v<meta::get_data_members_m<meta_A>> << endl;
cout << meta::get_size_v<meta::get_data_members_m<meta_B>> << endl;
cout << meta::get_size_v<meta::get_data_members_m<meta_C>> << endl;
cout << meta::get_size_v<meta::get_all_data_members_m<meta_A>> << endl;
cout << meta::get_size_v<meta::get_all_data_members_m<meta_B>> << endl;
cout << meta::get_size_v<meta::get_all_data_members_m<meta_C>> << endl;
return O;

3

This program produces the following output:
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Note that neither the result of get_data members nor the result of get_all_data members includes
the inherited data members.

5 The unpredictable future

In this section we would like to discuss possible future extensions and the evolution of reflection.

It is important to emphasize that the features discussed in this section are not part of the initial
implementation of reflection as proposed in the P0194Rx papers.

5.1 Additional utilities

In this section we describe several useful metaprogramming utilities which could be added later to
the standard library to simplify the use of the basic reflection primitives in certain cases.

5.1.1 identity

The identity template should be defined as follows:

template <typename X>
struct identity
{

typedef X type;

};

The primary purpose of identity is to wrap types which cannot be instantiated®® into a template
which still carries information about these types, but can be used to create run-time variables.

For example:
using MO = reflexpr(int);

void v; // error
MO mo; // error

identity<void> idv; // OK
identity<MO> idmo; // OK

This can be used for example to pass metaobjects into lambda functions, templated constructors
or operators.

30)ike the metaobjects returned by reflexpr
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5.1.2 for_each

The for_each function should sequentially call a specified UnaryFunction on instances of identity-
wrapped metaobjects from a Meta-ObjectSequence. It should be equivalent to the following:
namespace meta {

template <typename MetaObjectSequence, typename UnaryFunction>
void for_each(UnaryFunction func)

{
func(identity<Metaobject1>());
func(identity<Metaobject2>());
VA 4
func(identity<MetaobjectN>());
}

} // namespace meta
For example:

meta: :for_each<meta::get_data_members_m<reflexpr(my_class)>>(
[] (auto idmo)

{
using MO = decltype(idmo) ::type;

)

There are some cases where we would like to have the ability to interrupt the traversal if some
condition is met, for example if the user-defined function returns true.

template <typename MetaObjectSequence, typename UnaryFunction>
void for_each_until(UnaryFunction func)

{
if (func(identity<Metaobject1>())) return;
if (func(identity<Metaobject2>())) return;
VA 4
if (func(identity<MetaobjectN>())) return;
}

5.1.3 unpack_sequence

The unpack_sequence template should instantiate the provided variadic template with metaobjects
from a specified Meta-ObjectSequence as template arguments. It should be equivalent to the
following;:

namespace meta {

template <typename MetaObjectSequence, template <typename ...> class Template>
struct unpack_sequence

{
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typedef Template<Metaobjectl, Metaobject2, ... MetaobjectN> type;
3

template <typename MetaObjectSequence, template <typename ...> class Template>
using unpack_sequence_t =
typename unpack_sequence<MetaobjectSequence, Template>::type;

} // namespace meta

If we wanted only members satisfying an unary predicate, the following variant of unpack_sequence
could be used:

namespace meta {

template <
typename MetaObjectSequence,
template <typename ...> class Template,
template <typename> class Predicate
>
struct unpack_sequence_if
{
typedef Template<...> type;
+;
template <
typename MetaObjectSequence,
template <typename ...> class Template,
template <typename> class Predicate
>

using unpack_sequence_if_t =
typename unpack_sequence_if<
MetaobjectSequence,
Template,
Predicate
>::type;

} // namespace meta

5.2 Context-dependent reflection

One of the interesting potential future extensions of reflection is context-dependent refiection. Cur-
rently the operands of reflexpr are names of the base-level entities which we want to reflect.

Context-dependent reflection would allow to obtain metadata based on the context in which the
reflection operator is invoked, instead of on the declaration name.

Several new expressions would have to be added as valid operands for reflexpr, allowing to reflect

” namespace, class or even function.

the “curren
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5.2.1 Namespaces

If the this::namespace expression was used as the operand of the reflection operator, then it
would return a Meta-Namespace reflecting the innermost namespace inside of which the reflection
operator was invoked.

For example:

typedef reflexpr(this::namespace) _meta_gs;
reflects the global scope namespace and is equivalent to
typedef reflexpr(::) _meta_gs;

For named namespaces:

namespace foo {

typedef reflexpr(this::namespace) _meta_foo;

namespace bar {

typedef reflexpr(this::namespace) _meta_foo_bar;

} // namespace bar

} // namespace foo

5.2.2 Classes

If the this::class expression was used as the argument of the reflection operator, then it would
return a Meta-Class reflecting the class inside of which the reflection operator was invoked.

For example:

struct foo

{

const char* _name;

// reflects foo
typedef reflexpr(this::class) _meta_fool;

foo(void)

_name (get_name_v<reflexpr(this::class)>())
{3
void f(void)
{

// reflects foo

typedef reflexpr(this::class) _meta_foo02;
}
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double g(double, double);

struct bar

{
// reflects foo::bar
typedef reflexpr(this::class) _meta_foo_bar;
I
s
double foo::g(double a, double b)
{
// reflects foo
typedef reflexpr(this::class) _meta_foo3;
return atb;
}
class baz
{
private:
typedef reflexpr(this::class) _meta_baz;
s

typedef reflexpr(this::class); // error: not used inside of a class.

5.2.3 Functions

If the this::function expression was used as the argument of the reflection operator, then it
would return a Meta-Function reflecting the function or operator inside of which the reflection
operator was invoked.

For example:

void foobar (void)

{
// reflects this particular overload of the foobar function
typedef reflexpr(this::function) _meta_foobar;

X

int foobar(int i)

{
// reflects this particular overload of the foobar function
typedef reflexpr(this::function) _meta_foobar;
return i+1;

3

class foo

{

private:
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void f(void)

{
// reflects this particular overload of foo::f
typedef reflexpr(this::function) _meta_foo_f;
}
double f(void)
{
// reflects this particular overload of foo::f
typedef reflexpr(this::function) _meta_foo_f;
return 12345.6789;
}
public:
foo(void)
{
// reflects this constructor of foo
typedef reflexpr(this::function) _meta_foo_foo;
}
friend bool operator == (foo, foo)
{
// reflects this operator
typedef reflexpr(this::function) _meta_foo_eq;
}

typedef reflexpr(this::function) _meta_fn; // error
s

typedef reflexpr(this::function) _meta_fn; // error

5.2.4 Templates

If the this::template expression was used as the argument of the reflection operator, then it
would return a Meta-Template reflecting the class (or function) template inside of which the
reflection operator was invoked.

For example:

template <typename First, typename Second, typename Third>
struct triplet

{
// reflects the template not the instantiation
using _meta_tpl = reflexpr(this::template);
// reflects the instantiation not the template
using _meta_cls = reflexpr(this::class);

s
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5.3 Reversing reflection
The reflexpr operator allows to obtain the meta-level representation of a base-level declaration.
But what if we wanted to do the opposite: to get back the original declaration from a metaobject?

This of course would make sense only for a subset of metaobjects, so let’s define a new concept like
Meta-Revertible.

One way to achieve this would be to extend the reflexpr operator. In case that the operand of
reflexpr is a Meta-Revertible it should “return” the original declaration, for other metaobjects
the behavior would be undefined.

Let’s look at some possible use cases for this feature. The most trivial one is to replace the
get_original type template from the interface of Meta-Type:

using MT = reflexpr(int);
// ... lots of other code here ...

// Now we arrived to a point where we need
// to get the base-level type reflected by ‘MT°.

// Instead of using get_reflected_type ...
using T = get_reflected_type_t<MT>;

// we could do:

static_assert(meta::is_revertible_v<MT> && meta::is_type_v<MT>, "");
using T = reflexpr(MT);

static_assert(is_same_v<T, int>, "");

But that’s far from being the only use case. If we could get back to the original namespace or
variable;

namespace foo {

std::string str;

void bar(const std::string&);
} // namespace foo

using MV = reflexpr(foo::str); // Meta-Variable

// ... lots of code here ...
// using namespace foo;
using namespace reflexpr(get_scope_m<MV>);

// [foo::Ibar(foo::str);
bar (reflexpr (MV));

or even selecting whole namespaces programmatically;

namespace foo {
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void funcl(const std::string&);
void func2(int, int, int);
int func3(long, short, bool);

} // namespace foo

namespace bar {
void funcl(const std::stringk);
void func2(int, int, int);
int func3(long, short, bool);

} // namespace bar

template <typename MN>
void algorithm(const string& str, int i, int j)

{
// [foolbar]::funcl
reflexpr (MN) : : funcl(str);
// [foolbar]::func2([foolbar]:: func3(i*j, 64, © == 7), i, j);
reflexpr (MN) : : func2(reflexpr(MN) : : func3(ix*j, 64, i == j), i, j);
}

void func(const string& str, int i, int j, bool want_foo)
{

if (want_foo)

{

algorithm<reflexpr(foo)>(str, i, j);
}
else
{

algorithm<reflexpr(bar)>(str, i, j);
}

}
or get back to the original function;

namespace foo {
void bar(const std::string&);
} // namespace foo

using MF = reflexpr(foo::bar); // Meta-Function

// ... lots of code here ...
// foo::bar("hello");
reflexpr (MF) ("hello");

or back to the original class data member;

struct my_struct

{
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int i;
float f;
};

// Meta-DataMember
using MDM = get_element_m<get_data_members_m<reflexpr(foo::bar)>, 0>;

my_struct x {123, 45.67f};

assert(x.i == 123);
/) @i = 234;
x.reflexpr(MDM) = 234;
assert(x.i == 234);

or go back to the original template;

// Meta-Template

using MTpl = reflexpr(std::pair);

// std::pair<int, std::string> p;

reflexpr (MTpl)<int, std::string> p{10, "Hi!"};
and so on.

Combined with the fact that all metaobjects are first-class entities this would make a very powerful
feature, which would essentially allow to sort of reify all reflectable declarations, even those which
are second-class without actually reifying them at the base-level!

The the name of the reflexpr operator works nicely in both directions:
e Base—Meta -level: reflect an expression.
o Meta— Base -level: get reflected expression.

We are however also considering to use another name for the reverse operator. So far decltype (Metaobject)3?

and unreflexpr (Metaobject)?3? were suggested.

5.4 Generating identifiers programmatically

Some of the use cases from the committee’s CFP, for example the one described in section 4.9,
depend on the ability to generate identifiers programmatically.

5.4.1 ldentifier from a generic compile-time string

We will start by the most powerful, but also the most difficult to implement option — an operator,
say identifier(const char (&) [N])3*, which “creates” an identifier from an arbitrary compile-
time string, so that:

31 At the cost of the round-trip through the meta-level.

32which works nicely for metaobjects reflecting types, but not otherwise
33see the Acknowledgements

34We do not insist on this particular name in case it should be implemented.
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identifier("std")::identifier("size_t")
identifier("foo") (int identifier("i"), int j);

would be equivalent to
std::size_t foo(int i, int j);

Remember that the string-returning operations defined on the named metaobjects, for example the
meta: :get_name operation, return constexpr arrays of chars. This means that we can use them
to copy the name of a declaration, from a metaobject reflecting that declaration:

struct bar

{
int foo;

s
using meta_bar_foo = reflexpr(bar::foo);

std::size_t identifier (meta: :get_na.me_v<meta_bar_foo>) (int i, int j) 5
which is again equivalent to:
std::size_t foo(int i, int j);

It’s important to note, that in order to do anything more complex than just copying the identifiers of
other declarations, we would also need some compile-time string manipulation utility. For example
to create identifiers like get_% or set_}% where % is a declaration name, we would need to have a
function for compile-time string concatenation, like ct_concat:

using meta_bar_foo = reflexpr(bar::foo);

int identifier(ct_concat("get_", meta::get_name_v<meta_bar_foo>)) (const bar&);
which would be equivalent to:
int get_foo(const bar&);

While being very appealing and powerful, implementing this feature may also prove to be very
challenging, especially taking the different phases of compilation into account.

5.4.2 ldentifier formatting

Another option is a simplified version of the operator identifier, which would take a format string
literal and optionally a pack of Meta-Named metaobjects:

struct bar

{
int foo;

};

using meta_bar = reflexpr(bar);
using meta_foo = reflexpr(bar::foo);
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identifier("int")
identifier("get_%1_%2", meta_bar, meta_foo) (const identifier ("’ 1", meta_bar)&);

which would result in:
int get_bar_foo(const bar&);

In this case we would only allow string literals, not arbitrary constexpr string-returning expressions
and the identifier formatting would be handled inside of the compiler.

Also note that we could combine this with the reversible reflection described in section 5.3 and
reuse the reflexpr operator instead of adding a new operator like identifier:

reflexpr("int")
reflexpr("get_%1_%2", meta_bar, meta_foo) (const reflexpr("%1", meta_bar)&);

5.4.3 named data member and named member_typedef

If we don’t want to implement the operator identifier or expose it to the users directly, the
third option is to add new operations like named_member_typedef and named_data_member for
Meta-Named metaobjects equivalent to the following:

template <MetaNamed MO, typename X>
struct named_member_typedef

{
struct type
{
// same as
// typedef X identifier(meta::get_name_v<M0>);
typedef X __builtin_identifier_of (MO);
s
s

template <MetaNamed MO, typename X>
struct named_data_member

{
struct type
{
// same as
// X identifier(meta::get_name_v<MO>);
X __builtin_identifier_of (M0O);
template <typename ... P>
type(P&& ... p)
: __builtin_identifier_of (MO) (forward<P>(p)...)
{1}
+;
s

template <MetaNamed MO, typename X>
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using named_member_typedef_t = typename named_member_typedef<M0, X>::type;
template <MetaNamed MO, typename X>
using named_data_member_t = typename named_data_member<MO, X>::type;

So for example the specializations of named_member_typedef and named_data_member for the
metaobject reflecting bar: : foo would look like this:

template <typename X>
struct named_member_typedef<reflexpr(bar::foo), X>

{
struct type
{
typedef X foo;
+;
s

template <typename X>
struct named_data_member<reflexpr(bar::foo), X>

{
struct type
{
X foo;
template <typename ... P>
type(P&& ... p)
foo(forward<P>(p)...)
{1}
3
};

With some clever metaprogramming we can combine specializations of named_data_member_t<...>
or named_member_typedef_t<...> into structures having member types or variables with names,
matching other existing declarations.

Note that this option does not give use the ability to change the identifiers, just copy them and it’s
generally less powerful. On the other hand, implementing it may be much less complicated than
the first two options.

5.5 Variadic composition
Another feature which?® has the potential to greatly simplify the implementation of several impor-
tant use cases, including the structure data member transformations, is variadic composition.

We already have variadic inheritance that is used in the implementation of tuples for example, but
we don’t have variadic composition.

The reason for this is simple — every class data member needs to have a name which is unique in the

35together with the ability to generate identifiers
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scope of its class and since we don’t have the ability to generate identifiers, we cannot implement
variadic composition.

For instance, the structure-of-arrays transformation described in section 4.9 could be simplified by
using variadic composition, together with the “identifier formatting operator” described in section
5.4.2 and the unpack_sequence helper template described in section 5.1.3:

template <DataMember ... MDM>

struct soa_helper

{
std::vector<meta::get_reflected_type_t<meta::get_type_m<MDM>>>
identifier("vec_%1", MDM)...;

s

template <typename T>

using soa = meta::unpack_sequence_t<
meta: :get_data_members_m<reflexpr(T)>,
soa_helper

>

I

With the “reversible reflection” feature described in section 5.3, the soa_helper could be imple-
mented as:

template <DataMember ... MDM>
struct soa_helper

{
std: :vector<reflexpr(meta: :get_type_m<MDM>)>

identifier("vec_%1", MDM)...;
}s;

5.6 Metaobject unique ID

In order to accommodate different programming paradigms, it may be advantageous to represent
metaobjects as both types and optionally also as constexpr wvalues and have the ability to convert
between these representations.

The compile-time value representation of a metaobject could be defined as:
namespace meta {

class object_uid
{
public:
constexpr object_uid(void) noexcept;
constexpr object_uid(const object_uid&) noexcept;

friend constexpr
bool operator == (object_uid, object_uid) noexcept;

friend constexpr
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bool operator != (object_uid, object_uid) noexcept;

friend constexpr
bool operator < (object_uid, object_uid) noexcept;

+;
} // namespace meta

The actual identifier could internally be something like a constant value of int, std::size_t or
std::intptr_t storing an index, a hash or an encoded (and possibly encrypted) pointer to the
internal representation of the metaobject in the compiler or something similar. This would however
be a hidden implementation detail.

The advantage of the object_uid is that we could represent heterogeneous metaobjects — different
types, as constexpr instances of a homogeneous type and store them in constexpr data structures
and use them with constexpr functions.

Instances of object_uid could be queried from a metaobject by a new operation, implemented by
the following template:

namespace meta {

template <Object T>
struct get_uid

{

constexpr const object_uid value = /* ... */;

I

template <0Object T>

constexpr object_uid get_uid_v = get_uid<T>::value;
} // namespace meta

As long as an instance of meta: :object_uid stayed constexpr, it would also be possible to convert
it back to a metaobject (type), for example by using a new version of the reflection operator
reflexpr:

// pseudocode
constexpr Object reflexpr(meta::object_uid);

This feature would make the use of reflection more convenient in some use cases or under some
paradigms and could help to simplify the implementation of the higher-level facades.

5.7 Future extensions of the reflection operator

Besides the primary function of the reflexpr operator — reflecting, base-level declarations, there
are several potential additional uses for it, some of which are also mentioned in other sections.
These are briefly reiterated here:

e context-dependent reflection, described in section 5.2,

e reverse reflection, described in section 5.3,
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e generating identifiers, described in section 5.4.2,

e turning a constexpr metaobject unique-identifier back to the metaobject type as described
in section 5.6.

6 Issues

6.1 Anonymous declarations
Q: How should anonymous namespaces, nested structs, unions or the global scope for that matter
be reflected?

In our opinion all such declarations should be reflected by the same metaobjects as their named
counterparts, but without conforming to the Meta-Named concept.

So for example the Meta-GlobalScope is a Meta-Namespace, but the has_name trait should
return false and the get_name operation would be either undefined or return an empty string.

On the other hand, even anonymous namespaces, classes or unions are scopes, so the metaobjects
reflecting them should conform to the Meta-Scope concept.

Same reasoning applies to anonymous namespaces, nested structs or unions.

6.2 Reflection of structs and unions
Q: Do we need separate Meta-Struct and Meta-Union concepts or is Meta-Class sufficient to
cover all cases?

We don’t have any strong opinion in this regard.

6.3 Alternatives for breaking access restrictions
Q: Some people were objecting to reflection being able to break access restrictions. Would this
capability be more acceptable if it had to be explicitly allowed or if it could be denied?

Breaking class member access restrictions is important for many use cases, like non-intrusive se-
rialization of third-party classes, which may include the serialization of non-public data-members.
But there may be situations where the programmer would like to prevent reflection from having
access to non-public members.

This may be achieved either by annotating such members with an attribute;

class very_private

{

[[nonreflectable]] int _really_secret;

J* ... %/
};

65



D0318RO0 — Static reflection

Rationale, design and evolution.

or by explicitly allowing access to reflection, for example by extending the friend mechanism:

class not_so_private

{
private:
friend reflexpr;
int _public_secret;
public:
VA 4
s

If this is deemed necessary, then we favor the first option.

Another option is to explicitly ask permission when accessing class members, which are considered
private or protected in a particular context. This can be done either by using a new variant of the
access operation like get_private_pointer and get_protected_pointer vs. get_pointer:

class mycls

{

private:
typedef int _my_t;
_my_t _secret;

public:
typedef value_type;
value_type value ;
VA B 4

s

using meta_mycls = reflexpr(meta_mycls);
using meta_mycls_dm = meta::get_all_data_members_m<meta_mycls>;
using meta_mycls_mt = meta::get_all_member_types_m<meta_mycls>;

using meta::get_element_m;
using meta::get_pointer_t;
using meta::get_private_pointer_t;

get_private_pointer_v<get_element_m<meta_mycls_dm, 0>>; // OK, asking nicely
get_pointer_v<get_element_m<meta_mycls_dm, 0>>; // error, member is private
get_pointer_v<get_element_m<meta_mycls_dm, 1>>; // OK, member is public

using meta::get_reflected_type_t;
using meta::get_private_reflected_type_t;

get_private_reflected_type_t<get_element_m<meta_mycls_mt, 0>>; // 0K, asking nicely
get_reflected_type_t<get_element_m<meta_mycls_mt, 0>>; // error, member is private
get_reflected_type_t<get_element_m<meta_mycls_mt, 1>>; // OK, member is public

However this approach would not scale very well because it requires three36 variants of all such
operations.

36or at least two
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A better alternative to the above might be to use a special variant of the reverse reflection operator
like reflexpr (private, Metaobject) and reflexpr(protected, Metaobject)
vs. reflexpr (Metaobject):

class mycls

{

private:
typedef int _my_t;
_my_t _secret;

public:
typedef value_type;
value_type value ;
VA 74

s

using meta_mycls = reflexpr (meta_mycls);
using meta_mycls_dm = meta::get_all_data_members_m<meta_mycls>;
using meta_mycls_mt = meta::get_all_member_types_m<meta_mycls>;

// un-reflect the data members

reflexpr(private, get_element_m<meta_mycls_dm, 0>); // 0K, asking nicely
reflexpr(get_element_m<meta_mycls_dm, 0>); // error, member is private
reflexpr(get_element_m<meta_mycls_dm, 1>); // OK, member is public

// un-reflect the member types

reflexpr(private, get_element_m<meta_mycls_mt, 0>); // UK, asking nicely
reflexpr(get_element_m<meta_mycls_mt, 0>); // error, member is private
reflexpr(get_element_m<meta_mycls_mt, 1>); // OK, member is public

6.4 Interaction with attributes

Q: Should we even reflect attributes? If so, how will the reflection of generalized attributes look
like?

Currently generalized attributes are used mostly as hints to the compiler. They can help the
compiler to do some optimizations?” or to indicate that the user really means to do something
what in other circumstances could be a bug®® that the compiler warns about, etc.

Some people argue that generalized attributes are not supposed to have any semantic effects — a
compiler should be able to completely strip a program of all attributes and it should not have any
effects on the behavior of the program.

Attributes could however be viewed more broadly as a generic mechanism for annotating declara-
tions®® in the code, without explicitly saying that the recipient can only be the compiler. There
are valid use cases for user annotations and since the annotations usually provide additional con-

37for example the probably (true) or carries_dependency attributes
38]ike the fallthrough or maybe_ unused attributes
39 Associating one or more constant values with the declarations.
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ceptual (meta-)information about a declaration, reflection is a natural mechanism for accessing the
annotations.

We favor the view that on the base-level the compiler should be able to strip attributes??, but it
should reflect them on the meta-level on demand.

Having covered that, the reflection of the “simple” attributes like [[attr1]] or [ [namespace: :attr2]]
could be pretty straightforward:

We add a Meta-Attribute concept and its trait, say meta::is_attribute, make it conform to
Meta-Named and Meta-Scoped concepts and then add an operation to the interface of Meta-
Object like get_attributes, returning a sequence of metaobjects reflecting the attributes on a
base-level declaration.

The complication is that attributes can have nearly arbitrary parameters; [[probably(true)]],
[[deprecated("reason")]], [[visibility(hidden)]], [[gnu::aligned(64)]]. The reflection
of such attributes and their arguments is currently unresolved.

6.5 Interaction with concepts

Q: Are there any special interactions between compile-time reflection and concepts?

Unresolved.

6.6 Interaction with modules

Q: Are there any special interactions between compile-time reflection and modules?

Unresolved.

7 Experimental implementation

A fork of the clang compiler with a initial, partial, experimental implementation of this proposal can
be found on github [7]. The modified compiler can be built by following the instructions listed in [1],
but instead of checking out the official clang repository, the sources on the mirror-reflection
branch of the modified repository should be used.

The implementation required changes (mostly additions) to roughly 3500 lines of code in the com-
piler plus circa 540 lines in the <reflexpr> header.

All examples listed in section 4.10 are working with the modified compiler.

This particular implementation works by generating and adding new CXXRecordDecls, with member
typedefs and member constants providing basic meta-data, to the AST. The templates implement-
ing the metaobject operations are referencing and occasionally transforming the members of the
metaobject types.

The is_metaobject trait is implemented by extending the existing clang’s type-trait framework
and adding the __is metaobject builtin operator.

4O6r to ignore attributes which it does not understand
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The Meta-ObjectSequence operations, namely get_size and get_element are implemented
lazily by using the new __reflexpr_size and __reflexpr_element operators.

Note that the limited time between the committee meetings and out limited experience at hacking
clang internals at the time of starting with the fork, lead to the implementation not being lazy and
thus neglecting some important opportunities to do optimizations. We expect that the compiler
implementers or ourselves during our next attempts will do a better job.

Also note that P0194R0 underwent some last-minute changes, which were not incorporated into
the implementation yet.

8 Frequently asked questions

8.1 Why metaobjects, why not reflect directly with type traits?

Q: Why should we bother with defining a set of metaobject concepts, let the compiler generate
models of these concepts and use those to obtain the metadata? Why not just extend the existing
type traits?

A: The most important reasons are the completeness and the scope of reflection. Type traits*! work
just with types. A reflection facility should however provide much more metadata. It should be able
to reflect namespaces, functions, constructors, class inheritance, templates, specifiers, variables, etc.

Without drastically changing the rules specifying what can or cannot be a template parameter, we
cannot properly reflect C++’s second-class declarations like namespaces.

This is also connected with the usability of reflection in metaprograms. Using types to reflect
various base-level declarations, allows to pass a representation of a namespace, a constructor, a
specifier or a parameter, around various “subroutines” of a metaprogram as a parameter or a
return value.

In order to achieve this by other means it would be necessary to make namespaces, etc. first-class
objects or at least to allow them to become template arguments.

So with type-based metaobjects we can do for example the following:

template <typename Metaobject>
void foo(void)
{
// do something terribly useful

foo<reflexpr(int)>(); // works

foo<reflexpr(std)>(); // works

foo<reflexpr(std: :string)>(); // works
foo<reflexpr(std::string::size_type)>(); // works
foo<reflexpr(std::size_t)>(); // works and ts different from the above
foo<reflexpr(std: :pair)>(); // works

41As they are defined now.
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foo<reflexpr(std::sqrt)>(); // works
foo<reflexpr(static)>(); // works

meanwhile without metaobjects:

template <something Param>
void foo(void)
{
// do something terribly useful, if possible

foo<int>(); // works

foo<std>(); // error?

foo<std::string>(); // works

foo<std::string: :size_type>(); // works

foo<std::size_t>(); // works but same as the above
foo_tpl<std::pair>(); // works (if there are two versions of foo)
foo<std::sqrt>(0); // error?

foo<static>(); // error?

8.2 OK, but why not reflect directly with several different operators?

Q: Alright, we partially agree with the reasoning in the previous question, but why don’t we use
several different operators to get the various pieces of metadata (like declaration names, types,
scopes, etc.) directly, skipping the metaobjects? For example we already have decltype (expr) so
why not add, declname (expr) or declscope (expr), etc.

A: The main reason is that there are many base-level declarations with various properties which
we want to reflect and having a separate operator for every one of them®?, will require many new
reserved keywords which can break existing code.

And still, what would the operator reflecting for example a scope return? In case of class scopes it
could return a type, but what if we are asking about the scope of a global-scope or namespace-level
declaration? We would either end up with something like the proposed metaobjects, or we would
have to make some other (not type-based) representation of any possible scope. In case of the latter
we would loose the ability to pass the representation of the scope as parameters to metaprograms.

The same applies to every other operation returning an expression which does not have first-class
identity in base-level C++.

It is possible that, the templates implementing the metaobject operations will internally use com-
piler built-ins*3, but these can use compiler-specific reserved keywords and they will all operate on
the metaobjects.

42There may be even several dozen.
43 Just like some of the type traits are implemented.
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8.3 Creating a separate type for each metaobject is so heavyweight.

Q: Isn’t the creation of a new type for each metaobject too heavyweight? Won’t it lead to unaccept-
able increases in the memory footprint and compilation times?

A: This might have been a problem if the metaobjects were regular types and if the implementation
was too coarse-grained or too eager.

For example if upon the invocation of reflexpr(std::string), the representations of all the
metadata related to the std: :string type** were generated immediately.

This is however not the case.

The metaobjects need to be types just enough so that they can be used as template arguments?.
They don’t need to have any name, scope, implicitly generated constructors, destructors, assignment
operators, virtual method tables, run-time type information, etc. All they need to have is a unique
identity and their internal representations need to point to the internal representations of the
declarations® which they reflect.

Also our proposal allows very fine granularity. The result of reflexpr can be a very lightweight
type, as we just described and the individual “attributes” like the name, scope, members, specifiers,
etc. related to the metaobject are materialized only when requested by one of the operations defined
for that particular metaobject concept, like get_name, get_scope, get_data_members, etc.

8.4 Creating a separate type for each string is so heavyweight.

Q: Isn’t the creation of a new type for each string returned for example from the get_name operation
too heavyweight? Won’t that lead to unacceptable increases in the memory footprint and compilation
times?

A: The answer is that we do not insist on creating a separate type for each string returned by
reflection. What we insist on is that we should have the ability to reason about and manipulate
the strings at compile-time. A static, constexpr-initialized, zero-terminated array of chars gives
us this ability.

So for example the implementation of the get_name operation should be equivalent to the following:

template <Named T>
struct get_name
{
typedef const char value_type[N+1];
static constexpr const char value[N+1] = {...,’\0’};

};

Some members of the committee suggested that for example the basic_string constant from
N4236 or some other compile-time string representation which eventually makes it to the standard
could be used to implement the get_name operation, but this in just an option not a requirement

#Like the compile-time representation of its name and the metaobjects reflecting its scope or its members.
45Similar to the void type
46Which the compiler needs to maintain anyway, regardless of reflection.
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for our part. We trust in the ability of the compiler vendors to pick and implement the best option
and to use all the tricks at their disposal to make expressions like;

std: :string(std: :meta: :get_name_v<reflexpr(std::pair)>);

as efficient as possible.

8.5 There’s already a type trait for that!

Q: Why do you introduce a metaobject trait like std: :meta::is_class<Metaobject> when there
already are equivalent type traits like std: :is_class<T>?

A The reason is consistency. While it is true that there are a few metaobject traits, which indicate
the same thing as already existing type traits, omitting the metaobject trait in favor of the type
trait would break consistency and make the interface less generic.

For example the following is much more consistent and nicer,

template <typename Metaobject>
void foo(void)

{

}
than,

if(std: :meta::is_class_v<Metaobject>) { ... }

else if(std: :meta::is_typedef_v<Metaobject>) { ... }
else if(std: :meta::is_type_v<Metaobject>) { ... }

else if(std: :meta::is_namespace_v<Metaobject>) { ... }
else if(std: :meta::is_function_v<Metaobject>) { ... }

template <typename T, typename Metaobject>
void foo(void)

{

}

or even,

if(std::is_class_v<T>) { ... }

else if(meta::is_typedef_v<Metaobject>) { ... }
else if (meta::is_type_v<Metaobject>) { ... }

else if(meta::is_namespace_v<Metaobject>) { ... }
else if (meta::is_function_v<Metaobject>) { ... }

template <typename Metaobject>
void foo(void)

{

if (std::is_class_v<get_reflected_type_t<Metaobject>>) { ... }
else if(meta::is_typedef_v<Metaobject>) { ... }

else if (meta::is_type_v<Metaobject>) { ... }

else if(meta::is_namespace_v<Metaobject>) { ... }

else if (meta::is_function_v<Metaobject>) { ... }
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Even more important is the problem with breaking genericity:

template <typename Metaobject, template <class> class Trait>
void bar(void)
{

if (Trait<Metaobject>::value) { ... }

else { ... }

bar<reflexpr(std), std::meta::is_namespace>(); // works
bar<reflexpr(static), std::meta::is_specifier>(); // works
bar<reflexpr(std::string), std::meta::is_class>(); // works
bar<reflexpr(std::string), std::is_class>(); // error!

In C++ there are many examples of various expressions doing the same thing, this is just one of
them. Having several options is not a bad thing, pick the one most appropriate for your particular

use case.

8.6 There’s already another expression for that!

Q: There are situations where you can do something much more easily without reflection than with

it, like &variable vs. meta::get_pointer_v<reflexpr(variable)> or
decltype(var) vs. meta::get_reflected_type_t<meta::get_type_m<reflexpr(var)>>, elc.

A Of course there are! There are also situations where the decision that you want to get a pointer
to or a to get the type of a (reflected) variable can be separated from the actual site where you

access (reflect) the variable by several layers of metaprogram templates.
Consider for example the following pseudo-code:

template <typename T>
void handle_var(const char* name, const T* ptr)
{

V& BN 74

template <MetaVariable MV>
void handle_meta_var(void)

{
// this may be true only in a fraction of cases
if (some_logic())
{
// we need the potinter just here
handle_var(
meta: :get_name_v<MV>,
meta: :get_pointer_v<MV>
)3
}
}
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template <MetaClass MC>
void handle_meta_class(void);

template <MetaType MT>
void handle_meta_type(void);

template <MetaVariable MV>
void handle_meta_ns(void);

template <Metaobject MO>
void generic_func_1(void)

{
// this may be true only in a fraction of cases
if (meta: :is_variable_v<M0>)
{
handle_meta_var<M0>();
}
else if (meta:is_class_v<M0>)
{
handle_meta_class<M0>();
}
else if (meta:is_type_v<M0O>)
{
handle_meta_type<M0>();
}
else if (meta:is_namespace_v<M0>)
{
handle_meta_ns<M0>() ;
}
}

template <Metaobject MO>
void generic_func_2(void)

{
if (some_trait_v<M0>)
{
generic_func_1<M0>Q) ;
}
else
}
// ... generic_func_3 - generic_func_19 ...

// all eventually calling generic_func_1

template <Metaobject MO>
void generic_func_20(void)

{
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if (some_logic())

{
generic_func_19<M0>();
}
else
{
generic_func_15<M0>();
}
}
void main(int argc, const char** argv)
{
std::string str;
generic_func_20<reflexpr(str)>();
generic_func_18<reflexpr(std)>();
generic_func_19<reflexpr(argc)>(Q);
generic_func_20<reflexpr(std: :pair)>();
// etc.
return O;
}

In this case we actually need the pointer or a reference to a variable only in a fraction of cases,
deep inside of the (meta-)program.

If we didn’t have the get_pointer operation, we would have to get the pointer very early and pass
it through the whole algorithm. Furthermore in many cases there would not be any meaningful
pointer to get so we would have pass nullptr. Now imagine that there were more metaobjects,
and potentially more pointers to pass around.

Having said this, we of course do not force anybody to use get_pointer when simply using the
ampersand operator directly would be enough.

Both cases are valid and again you should pick the most appropriate option for your situation.

8.7 All these additional options make it hard for the novices.

Q: This reflection proposal is too complex to be learned by beginning C++ programmers and the
novices might start to use unnecessarily complicated expressions to do simple things, like doing
get_pointer_v<reflexpr(x)> instead of &x.

A: A novice could equally do:

double a[2];
* (a+int (-exp(complex<double>(0, M_PI)).real())) = 123.456;

instead of

double a[2];
al1] = 123.456;
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Doing mistakes is a part of being a beginner in something.

C++ is a complex?” language which means that the reflection mechanism also must be expressive
enough to capture the complexity of the base-level. However we do expect that once static reflection
is available and the most common use cases are identified a more convenient and straightforward
facade will be added on top of it for simple and common things, while maintaining the usability of
reflection in more elaborate use cases.

8.8 Why are the metaobjects anonymous?

Q: Why should the metaobjects be anonymous types as opposed to types with well defined and
standardized names or concrete template classes, (possibly with some special kind of parameter
accepting different arguments than types and constants)?

A: We wanted to avoid defining a specific naming convention, because it would be difficult to do
so and very probably not user friendly (see C++ name mangling). There already are precedents
for anonymous types — for example C++ lambdas.

Another option would be to define a concrete set of template classes like:
namespace std {

template <typename T>

class meta_type /* Model of MetaType */

{}
} // namespace std

which could work with types, classes, etc., but would not work with namespaces, constructors, etc.
(see also the Q/A above):

namespace std {

template <something X> // problem
class meta_constructor /* Model of Meta-Constructor */

{}

template <something X> // problem
class meta_namespace /* Model of Meta-Namespace */

i}
} // namespace std

typedef std::meta_namespace<std> meta_std; // problem

Instead of this, the metaobjects are anonymous and their (internal) identification is left to the
compiler. From the user’s point of view, the metaobject can be distinguished by the means of the
metaobject traits.

4"No pun intended.
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8.9 Reflection violating access restrictions to class members?
Q: Why do you allow reflection to bypass the class member access restrictions? This is like giving
people nuclear weapons. I don’t want people to have nuclear weapons [sic].

A: This is a valid point, but there are several different ways to break access restrictions if the
programmer wants to and we feel that restricting reflection only to public class members would
severely limit its usefulness in implementing things like non-intrusive serialization, object-relational
mapping, etc.

Having said that we also try to design the interface to indicate to the users that they are breaking
encapsulation. For example the “basic” operation for getting class members — get_data_members,
returns only the reflections of public class data members. To get access to all data members
including the private or protected ones, the get_all_data_members?® operation has to be used.

Furthermore the is_public trait can be used to test if a class member is publicly accessible or not.

See also the issues section.

8.10 We need to get around access restrictions, but not in reflection.
Q: OK, we understand that there are use cases where we need to get around access restrictions, but
why do this in reflection? Why don’t we use some other, unrelated, “magic” operator for that?

A: In our opinion if want*® to add a way of sneaking past access restrictions, then reflection is the
perfect place to do it.

Reflection is like a way to look at a program from a higher dimension, not perceivable from the
base-level itself. The access restrictions are in the base-level language for a reason and having to
go through the meta-level to get around them seems appropriate.

Another reason for not using an operator — a reserved identifier, is to avoid causing conflicts with
names in existing code.

8.11 Why do we need typedef reflection?

Q: Why is it necessary to distinguish between types and typedefs or type aliases on the meta-level
when they are not distinguishable on the base-level? Or why do we need to reflect on syntax rather
than just on semantics?

A: Our preferred answer is that it’s better to have more information then less. Being able to
distinguish typedefs or aliases on the meta-level, brings additional information about what the
programmer meant, not just how it is implemented;

e size_type vs. unsigned,
e rank_type vs. short,

e const_iterator vs. const Elementx*,

48We are open to suggestions for a better, more expressive or dissuasive name.
and we do!
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e height_cm vs. float,
e pid_t vs. int,
e sighandler_t vs. void () (int),
e ctc.
If we reflect on typedefs or aliases we still know the underlying types, the opposite is not true.

t50

Having this information is important®” in several use cases.

e Debugging or trace messages (containing function signatures) are much more readable and
informative if they also contain the typedef names of parameter types, return values or vari-
ables, not just their underlying types.

e Cross-platform serialization or remote procedure calls may require typedef names instead of
native type names which vary between platforms.

8.12 Why Meta-ObjectSequences? Why not replace them with typelists?

Q: Why do you define the Meta-ObjectSequence concept and its operations? There are type-lists
proposed for the inclusion into the standard, why not use those?

A': The reason why we use Meta-ObjectSequences is efficiency. Operations like get_data_members
are currently designed to return metaobjects — very lightweight types representing a whole set of
other metaobjects, without actually instantiating the elements eagerly, unlike typelists which would
require that all contained metaobjects are generated as a part of the definition of the typelist. There
are use cases where returning a typelist directly would be much less efficient than returning the
lightweight metaobject sequence.

For example the user might want to test a big set of classes and find those, which have a precise
number of members or find those which have multiple base classes or just get the metaobject
reflecting only the first?' data member of a class having hundreds of members:

get_element_m<get_data_members_m<reflexpr (my_class) >, 0>;
This operation would involve the creation of two metaobjects:

1. the Meta-ObjectSequence and

2. the Meta-DataMember reflecting the first data member.

On the other hand if this operation returned a typelist of metaobjects, then all metaobjects would
have to be generated, even if most of them were not used afterwards.

What we can do is to add an operation converting a Meta-ObjectSequence into a typelist on
demand, which can be implemented trivially with the meta: :unpack_sequence template:

template &lt;typename ... T&gt;
struct type_list { /* ... */ };

50or at least very nice to have
lzero-th
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template &1t;0bjectSequence MOS&gt;
using convert_to_list = unpack_sequence&lt;M0S, type_list&gt;;

8.13 Why not reflect with constexpr instances of the same type?

Q: Why are the metaobjects implemented as distinct types and their interface as specializations of
templates? Why not provide the metadata as constexpr instances of the same type? Then we
could replace the metaobject sequences with arrays of constexpr instances and the templates with
constexpr functions. Wouldn’t the latter be more nice and efficient?

A: In other words why don’t we instead of:

using mo = reflexpr(my_ns::my_class);

std::cout << meta::get_name_v<mo> << std::endl;
std::cout << meta::get_name_v<meta::get_scope_m<mo>> << std::endl;
meta: :for_each<meta::get_data_members_m<mo>>(my_func) ;

do something like one of the following;:

A) meta::object mo = reflexpr(my_ns::my_class);

std::cout << meta::get_name(mo) << std::endl;
std::cout << meta::get_name(meta::get_scope_t(mo)) << std::endl;
meta: :for_each(meta: :get_data_members_t(mo), my_func);

B) meta::object mo = reflexpr(my_ns::my_class);

std::cout << mo.get_name() << std::endl;

std::cout << mo.get_scope().get_name() << std::endl;
mo.get_data_members () .for_each(my_func)

meta: :for_each(meta: :get_data_members(mo, my_func);

One of the reasons for the chosen representation of metaobjects and their interface was consistency
with the already existing type traits and the established practices in metaprogramming®?.

Having said that, there is nothing preventing us to implement a facade with similar syntax as
either of the above®®, on top of our chosen representation and we do plan to do that in the future.
“Niceness” is generally a matter of taste and we want to accommodate various programming styles.
See the various layers implemented by the Mirror reflection utilities [2] for some examples.

In regard to efficiency, the types representing the metaobjects are very lightweight up to the point
of being comparable to compile-time constants. Also the representation which we have chosen
allows for a very fine granularity and metadata which are not queried don’t have to be generated
by the compiler. This may not be true if the metadata is represented as instances of constexpr
structures, which must be initialized or would require some “magic” implementation.

Also note that the metaobjects reflecting the various members of a scope®® can and will be heteroge-

52Yes we are aware of the Boost.Hana library and the metaprogramming paradigm which it brings.
53and even others
54 namespaces, native types, structured types, enumerations, functions, etc.
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neous. This means that we will either have to implement them only as homogeneous compile-time
identifiers and implement their interface with “magic” constexpr functions very similar to our
templates, or we cannot store them in an array.

Furthermore, representing metaobject sequences as arrays of such constexpr objects also requires
all of the metaobjects in the sequence to be instantiated even if only a few of them will actually be
used. See also the previous question for more details on this.

8.14 Why not return fully qualified names?

Q: Why doesn’t the get_name operation return fully qualified names instead of base names?

A: This is because it is much easier to generate full names from base names by using metapro-
gramming, than to do the reverse — to parse the base name from a fully qualified and decorated
name at compile-time.

Also there are several possibilities how the full name can be formatted; should it contain any
whitespaces, if so where and how many?, should the const and volatile qualifiers be put before
or after the type name?, etc.

These details shouldn’t be handled by the basic reflection facility, but by a higher-level library.

8.15 What about the use cases from the committee’s CFP?
Q: How does this proposal handle the targeted use cases from the committee’s Call for Compile-Time
Reflection Proposals [10]?

A: Some of these use cases are discussed in the sections 4.3, 4.4 and 4.9 of this paper.
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