
MAUREEN(1) MirrorAuto Reflection Engine MAUREEN(1)

NAME
maureen − Mirror-library Auto Reflection/Registering Engine

SYNOPSIS
maureen[options]

DESCRIPTION
MAuReEn is a tool generating Mirror reflection library’s registering code from a set of C++ input files and a
set of input/output pattern pairs.

OPTIONS
−h --help

Prints a help screen.

−t --toolset <toolset-name>
Use the toolset specified bytoolset-name.

−i --input <input-pattern>
Input pattern, which is a part of a input/output pattern pair. This means that any --input option
must be directly followed by an--output option.
input-pattern : ’root|path|file|suffix|kind|scope|name’
see,INPUT PATTERNS andEXAMPLES below.

−o --output <output-pattern>
Output pattern, which is a part of a input/output pattern pair. This means that any --output option
must be directly preceded by an--input option.
output-pattern : ’root|path|file|suffix’
see,OUTPUT PATTERNS andEXAMPLES below.

−m --marefile <filepath>
Include statements from the specifiedMAREfile .

−I --include-path <direpath>
Add include file search path. This option applies to input patterns that have the root part specified
as% .

−D --define <preprocessor-symbol-definition>
Define a preprocessor symbol to be used when preprocessing the input sources.

−p --macro-prefix <PREFIX>
Prepend PREFIX to all registering macros in output.

−b --boost-macro-prefix
Prepend BOOST_ prefix to all registering macros in output.

INPUT PATTERNS
Input patterns specify which C++ input source or header files and which constructs from these files should
be processed into the resulting registering code.Every input pattern must have a matching output pattern
(see below). Theinput patters can be specified on the command line when invoking maureen, or in one of
theMAREfiles specified with the-m command line options. An input pattern has the following format:

’root|path|file|suffix|kind|scope|name’

MAuReEn 2011-05-11 1

MAUREEN(1) MirrorAuto Reflection Engine MAUREEN(1)

where the| (pipe) symbol acts as the separator and the individual components have the following meaning:

root The root path to the sources to be processed.The special value% means that the input files will be
searched at the paths specified by the-I options.
There is an important concept related to the root component of the pattern: thebase directory. In case the
input pattern was specified on the command line then the base directory is the current working directory
from whichmaureen has been invoked. If the pattern was specified in aMAREfile , then the base directory
is the directory where theMAREfile is located. An empty value specifies that thebase directory is to be
used as root.Examples:/usr/include, /home/login/include, C:\Devel\MyProject\headers, %.

path The path to the sources relative to the root. The Special value% means that any path applies including
an empty path.This way any file in the root directory or its subdirectories can be specified.Examples:
src, test, %.

file The file name pattern without the suffix, The special value% acts as a wildcard for a string of arbitrary
length. Examples:foo, foo%, %.

suffix The file suffix (extension) pattern. The special value% acts as a wildcard for a string of arbitrary
length. Examples:h, hpp, h%, %.

kind The kind of programming construct to be processed. The special value % can be used to process
ev erything. Examples:namespace, class, enum, %.

scopeThe pattern for the scopes to be processed. The special value% represents any named scope (i.e. not
the global scope), an empty value represents the global scope only.Examples:std, boost, foo%, %.

nameThe pattern specifying the names of the language constructs (specified by thekind component) to be
processed. Thespecial value% can be used to process everything. Examples: tm, my_class, my_project,
%.

Examples or full input patterns:

1: ’%|%|%|%||%|%’

Process files of any type in the directories specified by the-I options and their subdirectories, register
ev erything (namespaces, classes, enums, etc.), in the global scope.

2: ’%|%|%|%|%|%|%’

Process files of any type in the directories specified by the-I options and their subdirectories, register
ev erything (namespaces, classes, enums, etc.), in every namespace (excluding the global scope).

3: ’%|%|%|hpp|%|%|%’

Processhpp files in the directories specified by the-I options and their subdirectories, register everything
(namespaces, classes, enums, etc.), in any named namespace.

4: ’|%|%|hpp|%|%|%’

Processhpp files in the base directory and its subdirectories, register everything, in any named namespace.

5: ’||%|hpp|%||%’

Processhpp files in the base directory but not its subdirectories, register everything, in the global scope.

MAuReEn 2011-05-11 2

MAUREEN(1) MirrorAuto Reflection Engine MAUREEN(1)

6: ’||%|hpp|%|%|%’

Processhpp files in the base directory but not its subdirectories, register everything, in any named names-
pace.

7: ’||%|hpp|namespace||%’

Processhpp files in the base directory but not its subdirectories, register onlynamespaces from the global
scope.

8: ’||%|hpp|namespace|%|%’

Processhpp files in the base directory but not its subdirectories, register only nestednamespaces.

9: ’|%|%|inc|%||%’

Processinc files in the base directory and its subdirectories, register everything, from the global scope, but
not from any other namespace.

10: ’|%|%|hpp|%|test|%’

Processhpp files in the base directory and its subdirectories, register everything, from thetest namespace,
but not its nested namespaces.

11: ’|%|%|hpp|%|foo%|%’

Processhpp files in the base directory and its subdirectories, register everything, from thefoo namespace
and its nested namespaces.

12: ’|%|%|hpp|class|%|foo’

Processhpp files in the base directory and its subdirectories, register only classes namedfoo from any
named namespace.

13: ’%||time|h|%|std|tm’

Process thetime.h file in the input search directories but not in their subdirectories, register anything
namedtm from thestd namespace.

14: ’%||time||struct|std|tm’

Process thetime file in the input search directories but not in their subdirectories, register onlystructs
namedtm from thestd namespace.

OUTPUT PATTERNS
Output patterns specify the names and locations of the output files containing the resulting Mirror’s regis-
tering code. Every output pattern is linked to an input pattern The output patters can be specified on the
command line when invoking maureen, or in one of theMAREfiles specified with the-m command line
options.
As with the input pattern the output pattern has several components which can contain literal strings
(names, paths), but there are also several variables which can reference the values of the components from
the related input pattern. The variables are geneally expanded by the $(variable-name) expression although
several of the variable-expansion expressions can also have an extended syntax:

MAuReEn 2011-05-11 3

MAUREEN(1) MirrorAuto Reflection Engine MAUREEN(1)

root References the root from the input pattern

path References the path of the input file

file References the basename of the input file

suffix References the suffix of the input file

kind References the kind of the processed (registered) language construct (namespace, class, enum, etc.)

scopeReferences the scope of the processed (registered) language construct. The separating:: (double-
colon) can be replaced in the expansion by another separator with this expression syntax $(scope:<separat-
ing character>), for example for a typefoo::bar::baz::foobar the expression $(scope:/) expands into
’foo/bar/baz’ and $(scope:-) expands into’foo-bar-baz’ .

nameReferences the name of the processed (registered) language construct.

An output pattern has the following format:

’root|path|file|suffix’

where the| (pipe) symbol acts as the separator and the individual components have the following meaning:

root The directory path where the output files should be placed.As with the input pattern there is the con-
cept of thebase directory: In case the output pattern was specified on the command line then the base
directory is the current working directory from whichmaureen has been invoked. If the pattern was speci-
fied in aMAREfile , then the base directory is the directory where theMAREfile is located. The path spec-
ified as root is relative to the base directory, unless the value is an absolute path.Examples:
/opt/my_project/meta-data, ./meta-data, ../output/meta-data, $(root).

path The path to the output files relative to the root. If an empty value is specified, then the output files are
placed directly into the root directory.Examples:foo, test, $(path).

nameThe basename of the output file.Examples:$(name), $(scope:-)-$(name), meta-$(name), meta-data.

suffix The suffix of the output file.Examples:hpp, metahpp, meta$(kind).

Examples or full output patterns:

1: ’../output/meta-data|$(path)|$(file)|$(suffix)’

Place the output files to the../output/meta-datadirectory at the same paths that the input files had, relative
to the root specified in the input pattern.

2: ’../output/meta-data|$(scope:/)|$(name)|hpp’

Place the output files to the../output/meta-data directory, into subdirectories for every namespace, recur-
sively for nested namespaces, the files named by the individual registered language constructs, with thehpp
extension.

3: ’meta-data||$(scope:-)-$(name)|hpp’

Place the output files directly into themeta-datadirectory, the files named by the full-nested-names of the
individual registered language constructs (the double-colons replaced by-), with thehpp extension.

MAuReEn 2011-05-11 4

MAUREEN(1) MirrorAuto Reflection Engine MAUREEN(1)

4: ’|$(scope:_)|$(name)|meta-$(kind)’

Place the output to the base directory, into subdirectories for every namespace (the double-colons in the
nested namespace named replaced by an underscore), the files named by the basic names of the individual
registered constructs, with extensions likemeta-struct for struct’s,meta-classfor classes, etc.

MAREFILES
Besides specifying the input-to-output processing options on the command line, they can be also be speci-
fied inside special files, calledMAREfile s (from Mirror Auto Reflection Engine files). When invoking
maureen, one or multiple MAREfiles can be specified explicitly with the -m option, or if there is a file with
the nameMAREfile in the current working directory from whichmaureen was inv oked, then it is used
implicitly (unless there are any marefiles specified explicitly; in such case theMAREfile is not used).

The marefiles can contain three types of lines; comments, commands and input/output pattern pairs.

Comment lines must begin with the# sign and are ignored by the processor. Comments cannot be used on
the same line with commands or input/output pattern pairs.

Examples:
This is a comment
ERROR - invalid comment
@ ’define|TEST’ # ERROR - invalid comment

Command lines must begin with the@ (at) symbol and have the following format (note that the command
with the potential parameters is enclosed in apostrophes):

@ ’<command>[|parameter1[|parameter2[|...]]]’

Examples:
@ ’define|_DEBUG’
@ ’define|__BEGIN_STD_NAMESPACE|namespace std {’
@ ’define|__END_STD_NAMESPACE|}’

The input/output pattern pair simply contains an input and an output pattern, separated by a space on a sin-
gle line (again, note that both patterns are enclosed in apostrophes):

’<input-pattern>’ ’ <output-pattern>’

The format of the patterns is the same as specified in theINPUT PATTERNS andOUTPUT PATTERNS
sections above.

Examples:
’|%|%|hpp|namespace||%’ ’../out/meta-data||$(name)|$(suffix)’
’|%|%|hpp|%|%|%’ ’../out/meta-data||$(scope:_)|$(suffix)’

EXAMPLES
This section shows several simple examples including the sources, MAREfiles andmaureen command-line
invocations.

Let’s suppose there is the following directory tree:

+-+-[root_dir/]

MAuReEn 2011-05-11 5

MAUREEN(1) MirrorAuto Reflection Engine MAUREEN(1)

|
+-+-[include/]
| |
| +---[fubar.hpp]
| +---[person.hpp]
| ‘---[tetrahedron.hpp]
|
+-+-[maureen/]
| |
| +---[MAREfile.1]
| +---[MAREfile.2]
| ‘---[MAREfile.3]
|
‘---[MAREfile]

where the header files contain the following definitions:

// --- fubar.hpp ---

namespace foo {
namespace bar {
namespace baz {

struct qux { };

} // namespace baz
} // namespace bar
} // namespace foo

// --- person.hpp ---

namespace test {

struct person_pod
{

std::string given_name;
std::string middle_name;
std::string family_name;
std::tm birth_date;
double weight;
double height;

};

} // namespace test

// --- tetrahedron.hpp ---

namespace test {

struct vector
{

double x,y,z;

vector(double _x, double _y, double _z);

MAuReEn 2011-05-11 6

MAUREEN(1) MirrorAuto Reflection Engine MAUREEN(1)

vector(double _w);
vector(void);

double length(void) const;
friend vector operator + (const vector& a, const vector& b);
friend vector operator - (const vector& a, const vector& b);
// cross produnt
friend vector operator % (const vector& a, const vector& b);
// dot product
friend double operator * (const vector& a, const vector& b);

};

struct triangle
{

vector a, b, c;

triangle(const vector& _a, const vector& _b, const vector& _c);
triangle(void);

double area(void) const;
};

struct tetrahedron
{

triangle base;
vector apex;

tetrahedron(const triangle& _base, const vector& _apex);

tetrahedron(
const vector& a,
const vector& b,
const vector& c,
const vector& d

);

const vector& a(void);
const vector& b(void);
const vector& c(void);
const vector& d(void);

void reset_apex(const vector& _apex);
};

} // namespace test

The MAREfiles have the following contents:

Marefile
Process everything in the global scope
’|%|%|hpp|%||%’ ’out/metadata||$(name)|$(suffix)’
Process everything in the nested namespaces
’|%|%|hpp|%|%|%’ ’out/metadata|$(scope:/)|$(name)|$(suffix)’

MAuReEn 2011-05-11 7

MAUREEN(1) MirrorAuto Reflection Engine MAUREEN(1)

maureen/MAREfile.1
Process everything in the global scope
’|%|%|hpp|%||%’ ’../out/metadata||$(name)|$(suffix)’
Process everything in the nested namespaces
’|%|%|hpp|%|%|%’ ’../out/metadata|$(scope:/)|$(name)|$(suffix)’

maureen/MAREfile.2
process namespaces in the global scope
’|%|%|hpp|namespace||%’ ’../out/metadata||$(name)|$(suffix)’
process everything in the namespaces
’|%|%|hpp|%|%|%’ ’../out/metadata||$(scope:_)|$(suffix)’

Invoking maureen from theroot_dir without any arguments, which causes it to use theMAREfile in the
root dir, produces the following directory tree:

+-+-[root_dir/]
|
+-+-[out/]
| |
| ‘-+-[metadata/]
| |
| +-+-[foo/]
| | |
| | +-+-[bar/]
| | | |
| | | +-+-[baz/]
| | | | |
| | | | ‘---[qux.hpp]
| | | |
| | | ‘---[baz.hpp]
| | |
| | ‘---[bar.hpp]
| |
| +-+-[test/]
| | |
| | +---[person_pod.hpp]
| | +---[tetrahedron.hpp]
| | +---[triangle.hpp]
| | ‘---[vector.hpp]
| |
| +---[foo.hpp]
| ‘---[test.hpp]
|
‘---[...]

The directoryout/metadata is the output root. The filesfoo.hpp andtest.hpp contain code registering the
namespacefoo and test respectivelly, with Mirror. The directorytest/ contains registering code for types
defined in thetest namespace. The files inside are named by the individual classes declared therein and
contain registering code for the respective classes.

The directoryfoo and its nested subdirectoriesbar andbaz contain headers for registering the constructs
defined in the namespacesfoo, foo::bar and foo::bar::baz , respectivelly. The file qux.hpp for example

MAuReEn 2011-05-11 8

MAUREEN(1) MirrorAuto Reflection Engine MAUREEN(1)

contains registering code forstruct foo::bar::baz::qux , declared in theroot_dir/include/fubar.hpp input
header file.

The same output as above, could be achieved by the following invocations ofmaureen:

user@host:.../root_dir$ maureen \
--input ’|%|%|hpp|%||%’ \
--output ’out/metadata||$(name)|$(suffix)’ \
--input ’|%|%|hpp|%|%|%’ \
--output ’out/metadata|$(scope:/)|$(name)|$(suffix)’

user@host:.../root_dir$ maureen --marefile maureen/MAREfile.1

Invoking maureen with the-m maureen/MAREfile.2option produces the following output tree:

+-+-[root_dir/]
|
+-+-[out/]
| |
| ‘-+-[metadata/]
| |
| +---[foo.hpp]
| +---[foo_bar.hpp]
| +---[foo_bar_baz.hpp]
| ‘---[test.hpp]
|
‘---[...]

Again, the directoryout/metadata is the output root. The filesfoo.hpp, foo_bar.hpp, foo_bar_baz.hpp
and test.hpp contain code registering everything declared in thefoo, foo::bar , foo::bar::baz and test
namespaces, respectivelly.

AUTHOR
Matus Chochlik, Matus.Chochlik@fri.uniza.sk

COPYRIGHT
Copyright (c) 2008, 2009, 2010, 2011 Matus Chochlik

Permission is granted to copy, distribute and/or modify this document under the terms of the Boost Soft-
ware License, Version 1.0. (See a copy at http://www.boost.org/LICENSE_1_0.txt)

AUTHOR
Matus Chochlik, Matus.Chochlik@fri.uniza.sk

COPYRIGHT
Copyright (c) 2008, 2009, 2010, 2011 Matus Chochlik

Permission is granted to copy, distribute and/or modify this document under the terms of the Boost Soft-
ware License, Version 1.0. (See a copy at http://www.boost.org/LICENSE_1_0.txt)

MAuReEn 2011-05-11 9

