
ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

Document number: Dnnnn=12-mmmm
Date: 2012-09-25

Project: Programming Language C++, Library Working Group
Reply-to: Matúš Chochĺık (Matus.Chochlik@fri.uniza.sk)

Contents

1. Introduction 2

2. Motivation and Scope 3
2.1. Usefullness of reflection . 3
2.2. Motivational examples . 4

2.2.1. Factory generator . 5

3. Design Decisions 8
3.1. Desired features . 8
3.2. Layered approach and extensibility . 9

3.2.1. Basic metaobjects . 9
3.2.2. Mirror . 10
3.2.3. Puddle . 14
3.2.4. Rubber . 17
3.2.5. Lagoon . 20

3.3. Class generators . 26
3.4. Compile-time vs. Run-time reflection . 28
3.5. Annotations and relations . 29

4. Technical Specifications 30
4.1. Metaobject Concepts . 30

4.1.1. Categorization and Traits . 30
4.1.2. String . 32
4.1.3. Metaobject . 33
4.1.4. Specifier . 33
4.1.5. Named . 34
4.1.6. Scoped . 34
4.1.7. Named and Scoped . 35
4.1.8. Scope . 36
4.1.9. Namespace . 37
4.1.10. GlobalScope . 37
4.1.11. Type . 37
4.1.12. Typedef . 37
4.1.13. Class . 37
4.1.14. Function . 38
4.1.15. ClassMember . 40

1

mailto:Matus.Chochlik@fri.uniza.sk

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

4.1.16. Constructor . 40
4.1.17. Operator . 40
4.1.18. OverloadedFunction . 40
4.1.19. Template . 41
4.1.20. TemplateParameter . 41
4.1.21. Instantiation . 42
4.1.22. Enum . 42
4.1.23. Inheritance . 42
4.1.24. Variable . 43
4.1.25. Parameter . 43
4.1.26. NamedConstant . 43

4.2. Reflection . 43
4.2.1. Reflection functions . 44
4.2.2. Reflection operator . 44

5. Impact On the Standard 48

6. Implementation hints 48
6.1. Generation of metaobjects . 48

7. Unresolved Issues 48

8. Acknowledgements 49

9 References 49

A. Examples of metaobjects 49

1. Introduction

Reflection and reflective programming can be used for a wide range of tasks such as
implementation of serialization-like operations, remote procedure calls, scripting, auto-
mated GUI-generation, implementation of several software design patterns, etc. C++ as
one of the most prevalent programming languages lacks a standardized reflection facility.

In this paper we propose the addition of native support for compile-time reflection to
C++ and a library built on top of the metadata provided by the compiler.

The basic static metadata provided by compile-time reflection should be as complete as
possible to be applicable in a wide range of scenarios and allow to implement custom
higher-level static and dynamic reflection libraries and reflection-based utilities.

The term reflection refers to the ability of a computer program to observe and possibly
alter its own structure and/or its behavior. This includes building new or altering the

2

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

existing data structures, doing changes to algorithms or changing the way the program
code is interpreted. Reflective programming is a particular kind of metaprogramming.

Reflection should follow the principle of Ontological correspondence, i.e. should reflect
the base-level program constructs as closely as possible to a reasonable level. Reflection
should not omit existing language features not invent new ones that do not exist at the
base-level.

What reflection ”looks like” is thefore very language-specific. Reflection for C++ is nec-
essary different from reflection in Smalltalk since these are two quite different languages.

The ”reasonability” applies to the level-of-detail of the metadata provided by reflection.
It is a tradeoff between the complexity of the reflection system and its usefulness. The
”metadata” provided by the currently standard typeid operator are rather simple (which
may be good), but their usefulness is very limited (which is bad). On the other hand
a fictional reflection facility that would allow to inspect the individual instructions of a
function could be useful for some specific applications, but this system would also be
very complex to implement and use. The proposed reflection system tries to walk a
”middle ground” and be usable in many situations without unmanagable complexity.

The advantage of using reflection is in the fact that everything is implemented in a
single programming language, and the human-written code can be closely tied with
the customizable reflection-based code which is automatically generated by compiler
metaprograms, based on the metadata provided by reflection.

The solution proposed in this paper is based on the expirience with Mirror reflection
utilities [1] and with reflection-based metaprogramming.

2. Motivation and Scope

2.1. Usefullness of reflection

There is a wide range of computer programming tasks that involve the execution of the
same algorithm on a set of types defined by an application or on instances of these types,
accessing member variables, calling free or member functions in an uniform manner,
converting data between the language’s intrinsic representation and external formats,
etc., for the purpose of implementing the following:

• serialization or storing of persistent data in a custom binary format or in XML,
JSON, XDR, etc.,

• (re-)construction of class instances from external data representations (like those
listed above), from the data stored in a relational database, from data entered by
a user through a user interface or queried through a web service API,

3

http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

• automatic generation of a relational schema from the application object model and
object-relational mapping (ORM),

• support for scripting

• support remote procedure calls (RPC) / remote method invocation (RMI),

• inspection and manipulation of existing objects via a (graphic) user interface or a
web service,

• visualization of objects or data and the relations between objects or relations in
the data,

• automatic or semi-automatic implementation of certain software design patterns,

• etc.

There are several aproaches to the implementation of such functionality. The most
straightforward and also usually the most error-prone is manual implementation. Many
of the tasks listed above are inherently repetitive and basically require to process pro-
gramming language constructs (types, structures, containers, functions, constructors,
class member variables, enumerated values, etc.) in a very uniform way that could be
easily transformed into a meta-algorithm.

While it is acceptable (even if not very advantageous) for example, for a design pattern
implementation to be made by a human, writing RPC/RMI-related code is a task much
better suited for a computer.

This leads to the second, heavily used approach: preprocessing and parsing of the pro-
gram source text by a (usually very specfic) external program (documentation generation
tool, interface definition language compiler for RPC/RMI, web service interface genera-
tor, a rapid application development environment with a form designer, etc.) resulting
in additional program source code, which is then compiled into the final application
binary.

This approach has several problems. First, it requires the external tools which may not
fit well into the build system or may not be portable between platforms or be free; second,
such tools are task-specific and many of them allow only a limited, if any, customization
of the output.

Another way to automate these tasks is to use reflection, reflective programming, metapro-
gramming and generic programming as explained below.

2.2. Motivational examples

This section describes some of the many possible uses of reflection and reflective pro-
gramming on concrete real-world examples.

4

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

2.2.1. Factory generator

As already said above, it is possible (at least partially) to automate the implementation
of several established software design patterns. This example shows how to implement
a variant of the Factory pattern.

By factory we mean here a class, which can create instances of a Product type, but
does not require that the caller chooses the manner of the construction (in the program-
ming language) nor supplies the required arguments directly in the C++ intrinsic data
representation.

So instead of direct construction of a Product type,

// get the values of arguments from the user

int arg1 = get_from_user<int>("Product arg1");

double arg2 = get_from_user<double>("Product arg2");

std::string arg3 = get_from_user<std::string>("Product arg3");

//

// call a constructor with these arguments

Product* pp = new Product(arg1, arg2, arg3);

// default construct a Product

Product p;

// copy construct a Product

Product cp = p;

which involves selection of a specific constructor, getting the values of the required
arguments and possibly converting them from an external representation and calling the
selected constructor with the arguments, factories pick or let the application user pick
the Product’s most appropriate constructor, they gather the necessary parameters in a
generic way and use the selected constructor to create an instance of the Product:

// get data necessary for construction in xml

XMLNode xml_node_1 = get_xml_node(...);

XMLNode xml_node_2 = get_xml_node(...);

// make a factory for the product type

Factory<Product, XMLWalker> xml_factory;

// use the factory to create instances of Product

// from the external representation

Product p = xml_factory(xml_node_1);

Product* pp = xml_factory.new_(xml_node_2);

One of the interesting features of these factories is, that they separate the caller (who
just needs to get an instance of the specified type) from the actual method of creation.

By using a factory, the constructor to be called can be automatically picked depending

5

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

on the data available only at run-time and not be chosen by the programmer (at least
not directly as in the code above). Factory can match the constructor to best fit the
data available in the external representation (XML or JSON fragment, dataset resulting
from a RDBS query, etc.)

Even more interesting is, that such factories can be implemented semi-automatically
with the help of reflection.

Every factory is a composition of two distinct (and nearly orthogonal) parts:

• Product-type-dependent: includes the enumeration of Product’s constructors, enu-
meration of their parameters, information about the context in which a constructor
is called, etc. This part is based on reflection and independent on the representa-
tion of the input data.

• Data representation-dependent: includes the scanning of the available input data,
conversion into C++ intrinsic data representation, and the selection of the best
constructor. This part is user-defined and specifies how the input data is gathered
and converted into the C++ representation.

These two parts are then tied together into the factory class. Based on the input-data
related components, the factory can include a script parser or XML document tree
walker or code dynamically generating a GUI for the input of the necessary values and
the selection of the preferred constructor. Figure 1 shows such a GUI created by factory
automatically generated by the Mirror’s factory generator utility for a tetrahedron class
with the following definition:

struct vector

{

double x,y,z;

vector(double _x, double _y, double _z)

: x(_x), y(_y), z(_z)

{ }

vector(double _w)

: x(_w), y(_w), z(_w)

{ }

vector(void)

: x(0.0), y(0.0), z(0.0)

{ }

/* other members */

};

struct triangle

6

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

Figure 1: Example of a GUI created by a factory generated by the Mirror’s factory
generator.

{

vector a, b, c;

triangle(

const vector& _a,

const vector& _b,

const vector& _c

): a(_a), b(_b), c(_c)

{ }

triangle(void){ }

/* other members */

};

7

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

struct tetrahedron

{

triangle base;

vector apex;

tetrahedron(const triangle& _base, const vector& _apex)

: base(_base), apex(_apex)

{ }

tetrahedron(

const vector& a,

const vector& b,

const vector& c,

const vector& d

): base(a, b, c), apex(d)

{ }

/* other members */

};

3. Design Decisions

3.1. Desired features

The proposed reflection facility is designed with the following goals in mind:

• Reusability: The provided metadata should be reusable in many situations and
for many different purposes, not only the obvious ones. This is closely related to
completeness (below).

• Flexibility: The basic reflection and the libraries built on top of it should be de-
signed in a way that they are eventually usable during both compile-time and
run-time and under various paradigms (object-oriented, functional, etc.), depend-
ing on the application needs.

• Encapsulation: The metadata should be accessible through conceptually well-
defined interfaces.

• Stratification: Reflection should be non-intrusive, and the meta-level should be
separated from the base-level language constructs it reflects. Also, reflection should
not be implemented in a all-or-nothing manner. Things that are not needed, should
not generally be compiled-into the final application.

• Ontological correspondence: The meta-level facilities should correspond to the on-
tology of the base-level C++ language constructs which they reflect. This basically

8

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

means that all existing language features should be reflected and new ones should
not be invented. This rule may have some important exceptions, like the reflection
of containers.

• Completeness: The proposed reflection facility should provide as much useful meta-
data as possible, including various specifiers, (like constness, storage-class, access,
etc.), namespace members, enumerated types, iteration of namespace members and
much more.

• Ease of use: Although reflection-based metaprogramming allows to implement
very complicated things, simple things should be kept simple.

• Cooperation with other librares: Reflection should be usable with the existing in-
trospection facilites (like type_traits) already provided by the standard library
and with other libraries.

3.2. Layered approach and extensibility

The purpose of this section is to show that a static → dynamic and basic → complex
approach in designing reflection can accomodate a wide variety of programming styles
and is arguably the ”best” one. We do not propose to add all layers described below
into the standard library. They are mentioned here only to show that a well designed
compile-time reflection is a good foundation for many (if not all) other reflection facilities.

The Mirror reflection utilities [1] on which this proposal is based, implements several
distinct components which are stacked on top of each other. From the low-level meta-
data, through a functional-style compile-time interface to a completely dynamic object-
oriented run-time layer (all described in greater detail below).

3.2.1. Basic metaobjects

The very basic metadata, which are in Mirror provided (registered) by the user (or an
automated command-line tool) via a set of preprocessor macros. This approach is both
inconvenient and error-prone in many situations, but also has its advantages.

We propose that a standard compiler should make these metadata available to the pro-
grammer through the static basic metaobject interfaces described below. These should
serve as the basis for other (standard and non-standard) higher-level reflection libraries
and utilities.

In the Mirror utilities the basic metadata is not used directly by applications.

9

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

3.2.2. Mirror

Mirror is a compile-time functional-style reflective programming library, which is based
directly on the basic metadata and is suitable for generic programming, similar to the
standard type_traits library.

Mirror is the original library from which the Mirror reflection utilities started.

It provides a more user-friendly and rich interface than the basic-metaobjects. and a set
of metaprogramming utilities which allow to write compile-time meta-programs, which
can generate efficient and optimized program code using only those metadata that are
required.

The following text contains several (rather simple) examples of usage and the functional
style of the algorithms based on metadata provided by Mirror.

The first example prints some information about the members of selected namespaces
to std::cout.

struct info_printer

{

template <typename MetaObject>

void operator()(MetaObject mo) const

{

MIRRORED_META_OBJECT(MetaObject) mmo;

std::cout

<< mmo.construct_name()

<< ": "

<< mo.full_name()

<< std::endl;

}

};

int main(void)

{

using namespace mirror;

// print the info about each of the members

// of the global scope

mirror::mp::for_each<

members<

// this should be in standard C++

// be replaced by a specialstandard library

// function or operator

MIRRORED_GLOBAL_SCOPE()

10

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

>

>(info_printer());

// print the info about each of the members

// of the std namespace

mp::for_each<

members<

// this should be in standard C++

// be replaced by a special standard

// library function or operator

MIRRORED_NAMESPACE(std)

>

>(info_printer());

//

return 0;

}

This program produces the following output:

namespace: std

namespace: boost

type: void

type: bool

type: char

type: unsigned char

type: wchar_t

type: short int

type: int

type: long int

type: unsigned short int

type: unsigned int

type: unsigned long int

type: float

type: double

type: long double

class: std::string

class: std::wstring

class: std::tm

template: std::pair

template: std::tuple

template: std::allocator

template: std::equal_to

template: std::not_equal_to

template: std::less

11

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

template: std::greater

template: std::less_equal

template: std::greater_equal

template: std::vector

template: std::list

template: std::deque

template: std::map

template: std::set

The next example gets all types in the global scope, applies some type_traits modifiers
like std::add_pointer std::add_const and for each of such modified types calls a
functor that prints the names of the individual types to the standard output:

struct name_printer

{

template <typename MetaNamedObject>

void operator()(MetaNamedObject mo) const

{

std::cout << mo.base_name() << std::endl;

}

};

int main(void)

{

using namespace mirror;

// this function calls the name_printer functor passed

// as the function argument on each element in the

// range that is passed as the template argument

mp::for_each<

// this template transforms the elements in the range

// passed as the first argument by the unary template

// passed as the second argument

mp::transform<

// this template filters out only those metaobjects

// that satisfy the predicate passed as the second

// argument from the range of metaobjects passed

// as the first argument

mp::only_if<

// this template "returns" a range of metaobjects

// reflecting the members of the namespace

// (or other scope) that is passed as argument

12

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

members<

// this macro expands into a class

// conforming to the Mirror’s MetaNamespace

// concept and provides metadata describing

// the global scope namespace.

// in the proposed solution for standard C++

// this should be relaced by a special stdlib

// function or by an operator.

MIRRORED_GLOBAL_SCOPE()

>,

// this is a lambda function testing if its first

// argument falls to the MetaType category

mp::is_a<

mp::arg<1>,

meta_type_tag

>

>,

// this is a unary lambda function that modifies

// the type passed as its argument by

// the add_pointer and add_const type traits

apply_modifier<

mp::arg<1>,

mp::protect<

std::add_pointer<

std::add_const<

mp::arg<1>

>

>

>

>

>

>(name_printer());

std::cout << std::endl;

return 0;

}

This short program produces the following output:

void const *

bool const *

char const *

unsigned char const *

13

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

wchar_t const *

short int const *

int const *

long int const *

unsigned short int const *

unsigned int const *

unsigned long int const *

float const *

double const *

long double const *

The printing of names is definitely not the only usage of reflection. The scope of this
proposal does not allow to include and fully explain the more elaborated applications.
For some other examples of usage see [2].

3.2.3. Puddle

Puddle is a OOP-style (mostly) compile-time interface built on top of Mirror. It copies
the metaobject concept hierarchy of Mirror, but provides a more ”object-ish” interface
as shown below:

Instead of Mirror’s:

static_assert(

is_public<

access_type<

at_c<

member_variables<

reflected<person>

>,

0

>

>

>::value,

"Shoot, persons first mem. variable is not public!"

)

Puddle allows to do the following:

assert(

reflected_type<person>()

member_variables().

at_c<0>().

access_type().

is_public()

14

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

);

or a more complex use-case, in which a reflection-based algorithm traverses the global
scope namespace and its nested scopes and prints information about their members:

struct object_printer

{

std::ostream& out;

int indent_level;

std::ostream& indented_output(void)

{

for(int i=0;i!=indent_level;++i)

out << " ";

return out;

}

template <class MetaObject>

void print_details(MetaObject obj, mirror::meta_object_tag)

{

}

template <class MetaObject>

void print_details(MetaObject obj, mirror::meta_scope_tag)

{

out << ": ";

if(obj.members().empty())

{

out << "{ }";

}

else

{

out << "{" << std::endl;

object_printer print_members = {out, indent_level+1};

obj.members().for_each(print_members);

indented_output() << "}";

}

}

template <class MetaObject>

void print(MetaObject obj, bool last)

{

indented_output()

<< obj.self().construct_name()

<< " "

15

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

<< obj.base_name();

print_details(obj, obj.category());

if(!last) out << ",";

out << std::endl;

}

template <class MetaObject>

void operator()(MetaObject obj, bool first, bool last)

{

print(obj, last);

}

template <class MetaObject>

void operator()(MetaObject obj)

{

print(obj, true);

}

int main(void)

{

object_printer print = {std::cout, 0};

print(puddle::adapt<MIRRORED_GLOBAL_SCOPE()>());

return 0;

}

which prints the following on the standard output:

global scope : {

namespace std: {

class string: { },

class wstring: { },

template pair,

template tuple,

template initializer_list,

template allocator,

template equal_to,

template not_equal_to,

template less,

template greater,

template less_equal,

template greater_equal,

template deque,

class tm: {

member variable tm_sec,

member variable tm_min,

16

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

member variable tm_hour,

member variable tm_mday,

member variable tm_mon,

member variable tm_year,

member variable tm_wday,

member variable tm_yday,

member variable tm_isdst

},

template vector,

template list,

template set,

template map

},

namespace boost: {

template optional

},

namespace mirror: { },

type void,

type bool,

type char,

type unsigned char,

type wchar_t,

type short int,

type int,

type long int,

type unsigned short int,

type unsigned int,

type unsigned long int,

type float,

type double,

type long double

}

For more examples of usage see [3].

3.2.4. Rubber

Rubber is a OOP-style run-time type erasure utility built on top of Mirror and Puddle.
It again follows the metaobject concept hierarchy of Mirror and Puddle. Rubber allows
to access and store metaobjects of the same category in a single type, so in contrast to
Mirror and Puddle where a meta-type reflecting the int type and a meta-type reflecting
the double type have different types in Rubber they can both be stored in a variable
of the same type. Rubber does not use virtual functions but rather pointers to existing

17

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

functions implemented by Mirror to achieve run-time polymorphism.

The first example shows the usage of type-erased metaobjects with a C++11 lambda
function which could not be used with Mirror’s or Puddle’s meda-objects (because lamb-
das are not templated):

#include <mirror/mirror.hpp>

#include <rubber/rubber.hpp>

#include <iostream>

int main(void)

{

// use the Mirror’s for_each function, but erase

// the types of the iterated compile-time metaobjects

// before passing them as arguments to the lambda function.

mirror::mp::for_each<

mirror::members<

MIRRORED_GLOBAL_SCOPE()

>

>(

// the rubber::meta_named_scoped_object type is

// constructible from a Mirror MetaNamedScopedObject

[](const rubber::meta_named_scoped_object& member)

{

std::cout <<

member.self().construct_name() <<

" " <<

member.base_name() <<

std::endl;

}

);

return 0;

}

This simple application prints the following on the standard output:

namespace std

namespace boost

namespace mirror

type void

type bool

type char

type unsigned char

type wchar_t

type short int

type int

18

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

type long int

type unsigned short int

type unsigned int

type unsigned long int

type float

type double

type long double

The next example prints different information for different categories of metaobjects:

#include <mirror/mirror.hpp>

#include <rubber/rubber.hpp>

#include <iostream>

#include <vector>

int main(void)

{

using namespace rubber;

mirror::mp::for_each<

mirror::members<

MIRRORED_GLOBAL_SCOPE()

>

>(

eraser<meta_scope, meta_type, meta_named_object>(

[](const meta_scope& scope)

{

std::cout <<

scope.self().construct_name() <<

" ’" <<

scope.base_name() <<

"’, number of members = " <<

scope.members().size() <<

std::endl;

},

[](const meta_type& type)

{

std::cout <<

type.self().construct_name() <<

" ’" <<

type.base_name() <<

"’, size in bytes = " <<

type.sizeof_() <<

std::endl;

},

[](const meta_named_object& named)

19

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

{

std::cout <<

named.self().construct_name() <<

" ’" <<

named.base_name() <<

"’" <<

std::endl;

}

)

);

return 0;

}

It has the following output:

namespace ’std’, number of members = 20

namespace ’boost’, number of members = 0

namespace ’mirror’, number of members = 0

type ’void’, size in bytes = 0

type ’bool’, size in bytes = 1

type ’char’, size in bytes = 1

type ’unsigned char’, size in bytes = 1

type ’wchar_t’, size in bytes = 4

type ’short int’, size in bytes = 2

type ’int’, size in bytes = 4

type ’long int’, size in bytes = 8

type ’unsigned short int’, size in bytes = 2

type ’unsigned int’, size in bytes = 4

type ’unsigned long int’, size in bytes = 8

type ’float’, size in bytes = 4

type ’double’, size in bytes = 8

type ’long double’, size in bytes = 16

For more examples of usage see [4].

3.2.5. Lagoon

Lagoon defines run-time polymorphic interfaces and classes implementing these inter-
faces and wrapping the compile-time metaobjects from Mirror and Puddle. While Rub-
ber is more suitable for simple decoupling of reflection-based algorithms from the real
types of the metaobjects that the algorithms operate on, Lagoon is full-blown run-time
reflection utility that can be even decoupled from the application using it and loaded
dynamically on-demand.

This example queries the meta-types reflecting types in the global scope, orders them

20

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

by the value of sizeof and prints their names:

#include <mirror/mirror.hpp>

#include <lagoon/lagoon.hpp>

#include <lagoon/range/extract.hpp>

#include <lagoon/range/sort.hpp>

#include <lagoon/range/for_each.hpp>

#include <iostream>

int main(void)

{

using namespace lagoon;

typedef shared<meta_named_scoped_object> shared_mnso;

typedef shared<meta_type> shared_mt;

//

// traverses the range of meta-objects passed as

// the first argument and on each of them executes

// the functor passed as the second argument

for_each(

// sorts the range passed as the first argument

// using the functor passed as the second argument

// for comparison

sort(

// extracts only those having the meta_type

// interface

extract<meta_type>(

// gets all members of the global scope

reflected_global_scope()->members()

),

// compares two meta-types on the value

// of sizeof(reflected-type)

[](const shared_mt& a, const shared_mt& b)

{

return a->size_of() < b->size_of();

}

),

// prints the full name of a type

[](const shared_mt& member)

{

21

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

std::cout << member->full_name() << std::endl;

}

);

return 0;

}

This application prints the following on the standard output:

void

bool

char

unsigned char

short int

unsigned short int

wchar_t

int

long int

unsigned int

unsigned long int

float

double

long double

The following example is more complex and shows the usage of Lagoon’s object factories,
in this case a factory using a text-script similar to C++ uniform initializers to provide
input data from which a set of instances is constructed:

#include <mirror/mirror_base.hpp>

#include <mirror/pre_registered/basic.hpp>

#include <mirror/pre_registered/class/std/vector.hpp>

#include <mirror/pre_registered/class/std/map.hpp>

#include <mirror/utils/quick_reg.hpp>

#include <lagoon/lagoon.hpp>

#include <lagoon/utils/script_factory.hpp>

#include <iostream>

namespace morse {

// declares an enumerated class for morse code symbols

enum class signal : char { dash = ’-’, dot = ’.’ };

// declares a type for a sequence of morse code symbols

typedef std::vector<signal> sequence;

// declares a type for storing morse code entries

typedef std::map<char, sequence> code;

22

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

} // namespace morse

MIRROR_REG_BEGIN

// registers the morse namespace

MIRROR_QREG_GLOBAL_SCOPE_NAMESPACE(morse)

// registers the signal enumeration

MIRROR_QREG_ENUM(morse, signal, (dash)(dot))

MIRROR_REG_END

int main(void)

{

try

{

using namespace lagoon;

// a factory builder class provided by Lagoon

// that can be used together with a meta-type

// to build a factory

c_str_script_factory_builder builder;

// a class storing the input data for the factory

// built by the builder

c_str_script_factory_input in;

// the input data for the factory

auto data = in.data();

// polymorphic meta-type reflecting the morse::code type

auto meta_morse_code = reflected_class<morse::code>();

// a polymorphic factory that can be used to construct

// instances of the morse::code type, that is built by

// the builder and the meta-type reflecting morse::code.

auto morse_code_factory = meta_morse_code->make_factory(

builder,

raw_ptr(&data)

);

// the input string for this factory

const char input[] = "{" \

"{’A’, {dot, dash}}," \

23

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

"{’B’, {dash, dot, dot, dot}}," \

"{’C’, {dash, dot, dash, dot}}," \

"{’D’, {dash, dot, dot}}," \

"{’E’, {dot}}," \

"{’F’, {dot, dot, dash, dot}}," \

"{’G’, {dash, dash, dot}}," \

"{’H’, {dot, dot, dot, dot}}," \

"{’I’, {dot, dot}}," \

"{’J’, {dot, dash, dash, dash}}," \

"{’K’, {dash, dot, dash}}," \

"{’L’, {dot, dash, dot, dot}}," \

"{’M’, {dash, dash}}," \

"{’N’, {dash, dot}}," \

"{’O’, {dash, dash, dash}}," \

"{’P’, {dot, dash, dash, dot}}," \

"{’Q’, {dash, dash, dot, dash}}," \

"{’R’, {dot, dash, dot}}," \

"{’S’, {dot, dot, dot}}," \

"{’T’, {dash}}," \

"{’U’, {dot, dot, dash}}," \

"{’V’, {dot, dot, dot, dash}}," \

"{’W’, {dot, dash, dash}}," \

"{’X’, {dash, dot, dot, dash}}," \

"{’Y’, {dash, dot, dash, dash}}," \

"{’Z’, {dash, dash, dot, dot}}," \

"{’1’, {dot, dash, dash, dash, dash}}," \

"{’2’, {dot, dot, dash, dash, dash}}," \

"{’3’, {dot, dot, dot, dash, dash}}," \

"{’4’, {dot, dot, dot, dot, dash}}," \

"{’5’, {dot, dot, dot, dot, dot}}," \

"{’6’, {dash, dot, dot, dot, dot}}," \

"{’7’, {dash, dash, dot, dot, dot}}," \

"{’8’, {dash, dash, dash, dot, dot}}," \

"{’9’, {dash, dash, dash, dash, dot}}," \

"{’0’, {dash, dash, dash, dash, dash}}" \

"}";

// passes the input data to the factory

in.set(input, input+sizeof(input));

// use the factory built above to create

// a new instance of the morse::code type

raw_ptr pmc = morse_code_factory->new_();

24

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

// cast of the raw pointer returned by the factory

// to the concrete type (morse::code)

morse::code& mc = *raw_cast<morse::code*>(pmc);

// the morse::code type is just a map of char to

// a vector of morse signals, this prints them

// to cout in a standard way

for(auto i = mc.begin(), e = mc.end(); i != e; ++i)

{

std::cout << "Morse code for ’" << i->first << "’: ";

auto j = i->second.begin(), f = i->second.end();

while(j != f)

{

std::cout << char(*j);

++j;

}

std::cout << std::endl;

}

// uses the meta-type reflecting morse::code to delete

// the instance constructed by the factory

meta_morse_code->delete_(pmc);

}

catch(std::exception const& error)

{

std::cerr << "Error: " << error.what() << std::endl;

}

//

return 0;

}

This application has the following output:

Morse code for ’0’: -----

Morse code for ’1’: .----

Morse code for ’2’: ..---

Morse code for ’3’: ...--

Morse code for ’4’:-

Morse code for ’5’:

Morse code for ’6’: -....

Morse code for ’7’: --...

Morse code for ’8’: ---..

Morse code for ’9’: ----.

Morse code for ’A’: .-

Morse code for ’B’: -...

25

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

Morse code for ’C’: -.-.

Morse code for ’D’: -..

Morse code for ’E’: .

Morse code for ’F’: ..-.

Morse code for ’G’: --.

Morse code for ’H’:

Morse code for ’I’: ..

Morse code for ’J’: .---

Morse code for ’K’: -.-

Morse code for ’L’: .-..

Morse code for ’M’: --

Morse code for ’N’: -.

Morse code for ’O’: ---

Morse code for ’P’: .--.

Morse code for ’Q’: --.-

Morse code for ’R’: .-.

Morse code for ’S’: ...

Morse code for ’T’: -

Morse code for ’U’: ..-

Morse code for ’V’: ...-

Morse code for ’W’: .--

Morse code for ’X’: -..-

Morse code for ’Y’: -.--

Morse code for ’Z’: --..

For more examples of usage see [5].

3.3. Class generators

There are situations where the following transformation of scopes (classes, enumerations,
etc.) and their members would be very useful. Consider a simple user-defined structs
address and person,

struct address

{

std::string street;

std::string number;

std::string postal_code;

std::string city;

std::string country;

};

struct person

{

26

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

std::string name;

std::string surname;

address residence;

std::tm birth_date;

};

and an object-relational mapping (ORM) library, that would allow automatic genera-
tion of SQL queries from strongly typed expressions in a DSEL in C++. It would be
advantageous to have some counterparts for all ”ORM-aware” classes having members
with the same names as the original class, but with different types, like:

template <class T>

struct orm_table;

template <>

struct orm_table<address>

: public base_table

{

orm_column<std::string> street;

orm_column<std::string> number;

orm_column<std::string> postal_code;

orm_column<std::string> city;

orm_column<std::string> country;

orm_table(orm_param& param)

: base_table(param)

, street(this, param)

, number(this, param)

, postal_code(this, param)

, city(this, param)

, country(this, param)

{ }

};

template <>

struct orm_table<person>

: public base_table

{

orm_column<std::string> name;

orm_column<std::string> surname;

orm_column<address> residence;

orm_column<std::tm> birth_date;

27

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

orm_table(orm_param& param)

: base_table(param)

, name(this, param)

, surname(this, param)

, residence(this, param)

, birth_date(this, param)

{ }

};

Generating such or similar classes can also be achieved with reflection. The Mirror
library implements the by_name metafunction template and the class_generator utility
for this purpose.

The Puddle layer, described above, uses this functionality and allows access to metadata
reflecting member variables of a class or free variables of a namespace through the
overloaded operator -> of a meta-class or meta-namespace:

auto meta_person = puddle::reflected_type<person>();

// access the metavariable reflecting

// the birth_date member of person

assert(meta_person->birth_date().access_type().is_public());

// access the metadata for person::name

// and person::surname by their names

assert(

meta_person->name() ==

meta_person.member_variables().at_c<0>()

);

assert(

meta_person->surname() !=

meta_person.member_variables().at_c<0>()

);

This functionality could be extended to any scope member and the mechanism is de-
scribed below.

3.4. Compile-time vs. Run-time reflection

Run-time, dynamic reflection facilities may seem more readily usable, but with the
increasing popularity of compile-time metaprogramming, the need for compile-time in-
trospection (already taken care of by type_traits) and reflection also increases.

Also, if compile-time reflection is well supported it is relatively easy to implement run-
time or even dynamically loadable reflection on top of it. The oposite is not true: One
cannot use run-time metaobjects or the value returned by their member functions as
template parameters or compile-time constants.

28

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

From the performance point of view, algorithms based on static meta-data offer much
more possibilities for the compiler to do optimizations.

Thus, taking shortcuts directly to run-time reflection, without compile-time support has
obvious drawbacks.

3.5. Annotations and relations

Strict adhering to the principle of Ontological correspondence can pose a problem and
decrease the usefullness of reflection in certain cases. Probably the most important case
in C++ is the reflection of containers which are not implemented as first-class citizens
but rather by libraries.

The principle of ontological correspondence says that the meta-level facilities should not
invent metaobjects that do not correspond to base-level language features. In C++
where containers are basically regular classes internally implementing a data structure
that is not standardized and is platform-specific and having only a public interface
defined by the standard, automated reflection-based implementation of operations like
serialization, de-serialization, and others may become complicated.

The purpose of serialization (for example as a part of RPC) may be to convert an
instance of a container class into an external representation that can be used to transfer
the instance (for example via network) to a machine running the receiving application,
but having a different OS, compiler, using a different implementation of the standard
library and thus a different implementation of the container class.

If the serialization algorithm would use the description of the internal (non-standard
vendor-specific) structure of a class, then the receiving application would not be able to
restore the instance, because the internal structure of the class would be different.

Because of this a high-level mechanism is required, that would allow reflection-based
metaalgorithms to handle such cases.

One possible option is to break the principle of correspondence and add new concepts
for metaobjects allowing for example ”high-level” traversal or insertion of elements in
an arbitrary container. This approach has its advantages and could be implemented for
such special classes as containers, but is unsystematic.

Another option is to allow the base-level constructs to be annotated and let the metaob-
jects to provide these annotations to the metaalgorithms.

These annotations should take the form of tags: identifiers assigned to base-level con-
structs, like types, variables, class members, parameters, etc. and binary directional
relations between two language constructs, for example a relation between a class mem-
ber and a constructor parameter initializing the class member, a relation between (a
pair of) container element traversal functions (like begin and end in std. containers) and
functions or constructors doing element insertion into the same container class.

29

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

4. Technical Specifications

We propose that the basic metadata describing a program written in C++ should be
made available through a set of anonymous classes defined by the compiler. These
classes should describe various program constructs like, namespaces, types, typedefs,
classes, their member variables (member data), member functions, inheritance, tem-
plates, template parameters, enumerated values, etc.

The compiler should generate metadata for the program constructs defined in the cur-
rently processed translation unit. Indexed sets of metaobjects, like scope members, pa-
rameters of a function, etc. should be listed in the order of appearance in the processed
source code.

Since we want the metadata to be available at compile-time, different base-level con-
structs should be reflected by ”statically” different metaobjects and thus by different
types. For example a metaobject reflecting the global scope namespace should be a
different type than a metaobject reflecting the std namespace, a metaobject reflect-
ing the int type should have a different type then a metaobject reflecting the double

type, a metaobject reflecting ::foo(int) function should have a different type than a
metaobject reflecting ::foo(double), function, etc.

In a manner of speaking these special types (metaobjects) should become ”instances” of
the meta-level concepts (static interfaces which should not exist as concrete types, but
rather only at the ”specification-level” similar for example to the iterator concepts). This
section describes a set of metaobject concepts, their interfaces, tag types for metaobject
classification and functions (or operators) providing access to the metaobjects.

4.1. Metaobject Concepts

This section describes the requirements that various metaobjects need to satisfy in order
to be considered models of the individual concepts.

4.1.1. Categorization and Traits

In order to provide means for distinguishing between regular types and metaobjects the
is_metaobject trait should be added and should ”return” true_type for metaobjects
(types defined by the compiler providing metadata) and false_type for non-metaobjects
(native or user defined types).

The metaobject_traits structure should be defined to provide categorization and ad-
ditional information about the interface of metaobjects.

template <typename Metaobject>

struct metaobject_traits

30

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

{

typedef typename Metaobject::category category;

typedef integral_constant<bool, ...> has_name;

typedef integral_constant<bool, ...> has_scope;

typedef integral_constant<bool, ...> is_scope;

typedef integral_constant<bool, ...> is_class_member;

typedef integral_constant<bool, ...> has_template;

typedef integral_constant<bool, ...> is_template;

};

The meaning of the individual trait typedefs is following:

• category Is one of the following types and specifies the category of the metaobject:

– specifier_tag indicates a Specifier.

– namespace_tag indicates a Namespace.

– global_scope_tag indicates the GlobalScope.

– type_tag indicates a Type.

– typedef_tag indicates a Typedef.

– class_tag indicates a Class or a Template class.

– function_tag indicates a Function or a Template function.

– constructor_tag indicates a Constructor.

– operator_tag indicates an Operator.

– overloaded_function_tag indicates an OverloadedFunction.

– enum_tag indicates an Enum.

– inheritance_tag indicates an Inheritance.

– constant_tag indicates an NamedConstant.

– variable_tag indicates a Variable.

– parameter_tag indicates a Parameter.

• has_name indicates that the reflected object is Named. By default it is defined as
false_type unless specified otherwise in the concept description below.

31

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

• has_scope indicates that the reflected object is Scoped. By default it is defined as
false_type unless specified otherwise in the concept description below.

• is_scope indicates that the reflected object is a Scope. By default it is defined as
false_type unless specified otherwise in the concept description below.

• is_class_member indicates that the reflected object is a ClassMember. By default
it is defined as false_type unless specified otherwise in the concept description
below.

• has_template indicates that the reflected function or class is a template Instan-
tiation. By default it is defined as false_type unless specified otherwise in the
concept description below.

• is_template indicates that the reflected object is function or class Template.
By default it is defined as false_type unless specified otherwise in the concept
description below.

4.1.2. String

String is a stateless (or monostate) class that represents a compile-time character string
constant storing for example a name of a type, function, namespace, etc. or the keyword
of a specifier. It allows compile-time metaprograms to examine and make decisions based
on the value of such strings. If necessary, the stored string can be returned as a regular
C-string. See for example the Mirror’s compile-time strings [6].

One of the use-cases for these string is the filtering of scope members based on their
names if a good naming policy is consistently applied. For example: filter out all scope
members whose name starts with an underscore, or process only classes with names
starting with DB, etc.

Types conforming to this concept must implement the following:

• static const char* c_str(void); static member function returning the static
string as a regular null-terminated C-string.

• static integral_constant<int, number-of-characters> size(void); static mem-
ber function returning the number of characters in the string (obviously without
counting any terminating character).

• static integral_constant<char, i-th-character>
at(integral_constant<int, i >); overloaded member function defined for for
i ∈ {0, 1, . . . , n − 1};n = number-string-characters, each overload returning the
respective character in the string.

32

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

4.1.3. Metaobject

Metaobject is a stateless (or monostate) anonymous struct that provides metadata
reflecting certain program features and has the following properties:

• For every Metaobject the is_metaobject trait returns true_type.

• For every Metaobject the metaobject_traits structure is defined.

• For every Metaobject the typedef Metaobject::category is defined and has the
same meaning as metaobject_category<Metaobject>::category.

The exact type of a specific Metaobject reflecting a specific program feature is not defined
by the standard, instances of metaobjects should be always declared through the auto

type specifier.

All instances (in the classical sense) of a concrete Metaobject (i.e all instances of the
concrete anonymous type satysfying the requirements of the Type concept reflecting for
example the int type) should be equal to the programmer.

Instances (in the classical sense) of two different metaobjects (like an instance of the
concrete anonymous type satysfying the requirements of the Type concept reflecting the
int type and an instance of the concrete anonymous type satysfying the requirements
of the Type concept reflecting the double type) of course can (and will) be different.

// for all purposes these two instances of (Meta)Type

// should be equal and interchangable without any change

// to the behavior of the program

auto meta_int_1 = reflected<int>();

auto meta_int_2 = reflected<int>();

4.1.4. Specifier

Specifier is a Metaobject, which reflects specifiers like const, volatile, private, protected,
public, virtual, etc. and has the following requirements:

• static String keyword(void); returns the keyword of the reflected specifier. If
category is spec_none_tag then keyword returns ”” (an empty c-string).

• typedef Category category; is defined as one of the following types:

– spec_none_tag a category for missing specifiers, for example a non-const
member function would have a spec_none_tag constness specifier or a vari-
able with automatic storage class would have a spec_none_tag storage class
specifier, etc.

– spec_extern_tag indicates extern storage class / linkage.

– spec_static_tag indicates static storage class / linkage.

33

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

– spec_mutable_tag indicates mutable storage class / linkage.

– spec_register_tag indicates register storage class / linkage.

– spec_thread_local_tag indicates thread_local storage class / linkage.

– spec_const_tag indicates const member functions.

– spec_virtual_tag indicates virtual inheritance or function linkage.

– spec_private_tag indicates private member access.

– spec_protected_tag indicates protected member access.

– spec_public_tag indicates public member access.

– spec_class_tag indicates the class elaborated type specifier.

– spec_struct_tag indicates the struct elaborated type specifier.

– spec_union_tag indicates the union elaborated type specifier.

– spec_enum_tag indicates the enum elaborated type specifier.

4.1.5. Named

Named is a Metaobject reflecting program constructs, which have a name, like names-
paces, types, functions, variables, etc. and has the following requirements:

• static String base_name(void); member function that returns the base name of
the reflected construct, without the nested name specifier. For namespace std this
function should return ”std”, for namespace foo::bar::baz this function should
return ”baz”, for the global scope this function should return ”” (an empty c-string
literal).
For std::vector<int>::iterator it should return ”iterator”. For derived and
qualified types like
volatile std::vector<const foo::bar::fubar*> * const * it should return
”volatile vector<const fubar*> * const *”, etc. The string returned by this function
is owned by the function and should not be freed by the caller. Alternatively this
member function could be called identifier.

• metaobject_traits<Named>::has_name is defined as true_type.

4.1.6. Scoped

Scoped is a Metaobject reflecting program constructs, which are defined inside a scope
(global scope, namespace, class, etc.). Scoped metaobjects have the following require-
ments:

34

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

• static Scope scope(void); static member function returning a Scope metaob-
ject reflecting the scope of the scoped object. In concrete metaobjects the result
can be a Namespace, Class, etc.
The metaobject_traits<decltype(Scoped::scope())>::category typedef can
be used to query the kind of the scope.

• metaobject_traits<Scoped>::has_scope is defined as true_type.

4.1.7. Named and Scoped

Many of the concepts described below are specializations of both the Scoped and Named
concepts. Metaobjects conforming to these concepts have the following additional re-
quirements:

• static String full_name(void); member function that returns the full name of
the reflected construct, with the nested name specifier. For namespace std this
function should return ”std”, for namespace foo::bar::baz this function should
return ”foo::bar::baz”, for the global scope this function should return ”” (an empty
c-string literal).
For std::vector<int>::iterator it should return ”std::vector<int>::iterator”.
For derived and qualified types like
volatile std::vector<const foo::bar::fubar*> * const * it should return
”volatile std::vector<const foo::bar::fubar*> * const *”, etc. For some metaobjects
this function may return the same value as the base_name function. The string
returned by this function is owned by the function and should not be freed by the
caller.

• named_typedef nested member template struct defined as in the following pseudo-
code:

template <typename X>

struct named_typedef

{

typedef X <NAME>;

};

The <NAME> expression above would be replaced by the name of the reflected named
scoped object. This structure could be used to generate new classes with member
typedefs having the same names as the members of the scope of the named object
reflected by this Named, Scoped metaobject. One way to combinine the <NAME>

typedefs from various Named and Scoped scope members into a single class would
be to let the class inherit from multiple named_typedefs from the metaobjects
obtained by reflection.

• named_mem_var nested member template struct defined as in the following pseudo-
code:

35

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

template <typename X>

struct named_mem_var

{

X <NAME>;

named_mem_var(void) = default;

template <class Parent, class Param>

named_mem_var(Parent& parent, Param param)

: <NAME>(parent, param)

{ }

};

The <NAME> expression above would be replaced by the name of the reflected
named scoped object. This structure could be used to generate new classes with
member variables having the same names as the members of the scope of the named
object reflected by this Named, Scoped metaobject. The member variable <NAME>

could be default constructible or constructible from two parameters; a reference to
the generated class to which the member variable will belong and an application
specific parameter. One way to combinine the <NAME> member variables from
various Named and Scoped scope members into a single class would be to let the
class inherit from multiple named_mem_vars from the metaobjects obtained by
reflection.

4.1.8. Scope

Scope is a Named and Scoped metaobject, which reflects scopes like namespaces, classes,
enums, etc. Scope has the following requirements:

• static integral_constant<int, number-of-scope-members >

member_count(void); static member function returning the total number of var-
ious members like types, namespaces, functions, variables, etc. defined inside the
scope reflected by a Scope.

• static Scoped member(integral_constant<int, i >); overloaded member func-
tion defined for i ∈ {0, 1, . . . , n− 1};n = number-of-scope-members, each overload
returns a different Scoped metaobject reflecting the i-th member defined inside the
scope reflected by a Scope. In concrete metaobjects reflecting various kinds of
scopes the member(...) function can return metaobjects like Namespace, (Class-
Member) Variable, (ClassMember) OverloadedFunction, Typedef, Enum, etc.

• metaobject_traits<Scope>::is_scope is defined as true_type.

36

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

4.1.9. Namespace

Namespace is a Scope with the following requirements:

• metaobject_traits<Namespace>::category is defined as namespace_tag.

4.1.10. GlobalScope

GlobalScope is a Namespace reflecting the global scope and requires the following:

• metaobject_traits<GlobalScope>::category is defined as global_scope_tag.

4.1.11. Type

Type is a Named and Scoped metaobject which has the following requirements:

• typedef original-type original_type; member typedef defined as the original
type reflected by the Type.

• metaobject_traits<Type>::category is defined as type_tag.

The is_template typedef in metaobject_traits changes the requirements in the con-
cepts derived from Type.

4.1.12. Typedef

Typedef is a Type metaobject that reflects typedefs, i.e. types that were defined as
alternate names for another types. Typedef has the following requirements:

• static Type type(void); static member function returning a Type reflecting the
”source” type of the typedef. In concrete Typedef metaobjects type can return a
Type, Class, Enum or Typedef.

• metaobject_traits<Typedef>::category is defined as typedef_tag.

4.1.13. Class

Class is a Type and a Scope that reflects an elaborated type (class, struct, union) or a
class template. Class has the following requirements, but the is_template typedef in
the metaobject_traits changes the requirements inherited from the Type concept as
described below.

• static Specifier elaborated_type(void); static member function returning a
Specifier reflecting the elaborated type specifier used to define the class (class,
struct, union).

37

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

• static integral_constant<int, number-of-base-classes >

base_class_count(void); static member function returning the total number of
base classes that the class reflected by Class inherits from.

• static Inheritance base_class(integral_constant<int, i >); overloaded mem-
ber function defined for i ∈ {0, 1, . . . , n − 1}; n = number-of-base-classes, each
overload returns a different Inheritance metaobject reflecting the inheritance of
the i-th base class of the class reflected by Class.

• metaobject_traits<Class>::category is defined as class_tag.

If metaobject_traits<Class>::is_template is true_type it indicates that the re-
flected program feature is not a regular class, but a class template. In such case the
original_type typedef inherited from Type is not defined.

4.1.14. Function

Function is a Scope metaobject that reflects a function or a function template and re-
quires the following (the requirements are influenced by the metaobject_traits<Function>::is_template
typedef as described below):

• static Specifier linkage(void); static member function returning a Specifier
reflecting the linkage specifier of the function.

• static Type result_type(void); static member function returning a Type re-
flecting the result type of the function.

• static integral_constant<int, number-of-parameters >

parameter_count(void); static member function returning the total number of
parameters of the function reflected by Function.

• static Parameter parameter(integral_constant<int, i >); overloaded mem-
ber function defined for i ∈ {0, 1, . . . , n−1}; n = number-of-parameters, each over-
load returns a different Parameter metaobject reflecting the i-th parameter of the
function reflected by Function.

• static integral_constant<bool, true-or-false> throw_limited(void); static
member function indicating whether the reflected function has only a limited list
of exceptions that it can throw. If the reflected function was declared with the
throw exception specification (either empty or with a list of exception types) then
throw_limited returns true_type, otherwise if the function can throw any ex-
ception, throw_limited returns false_type. If true_type is returned, then the
exception_count and exception functions can be used to traverse the list of
exception types that the reflected function is allowed to throw.

• static integral_constant<int, number-of-exceptions >

exception_count(void); static member function returning either the total num-

38

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

ber of exceptions that the function reflected by Function can throw or returning
integral_constant<int, -1>. The result type of this function depends on the re-
sult of the throw_limited member function. If throw_limited returns true_type
then the actual number of allowed exception types is returned. If throw_limited
returns false_type then integral_constant<int, -1> is returned to indicate
that the reflected function can throw anything.

• static Type exception(integral_constant<int, i >); overloaded member func-
tion defined for i ∈ {0, 1, . . . , n − 1}; n = number-of-exceptions, each overload re-
turns a different Type metaobject reflecting the i-th exception from the explicit
exception specification of the function reflected by Function.

• metaobject_traits<Function>::category is defined as function_tag.

If metaobject_traits<Function>::is_template is defined as false_type i.e. the
reflected feature is not a template but a regular function then the following is also
required:

• static inline ResultType::original_type call(parameters. . .); static in-
line member function with the same return value type and the same number and
type of parameters as the original function reflected by Function. Calls to this func-
tion should be replaced with the call of the reflected function with the arguments
passed to call. Additionaly if the reflected function is

a member function, then the first of the parameters of call should be a reference
to the class where the member function is defined and should be used as the this

argument when calling the member function. If the member function is declared
as const then the reference to the class should also be const.

If metaobject_traits<Function>::is_class_member is defined as true_type i.e. the
reflected is a member function and not a free function or lambda function, then the
following is also required:

• static Specifier constness(void); static member function returning the con-
stness Specifier reflecting the constness of the member functions.

• static integral_constant<bool, true-or-false> is_pure(void); static inline
member function that returns true_type or false_type indicating whether the
reflected member function is a pure virtual function. For non-virtual functions it
always returns false_type.

Function metaobjects are not direct members of scopes. Instead, all functions with the
same name (even those that are not overloaded) in a specific scope are grouped into
a OverloadedFunction. Individual overloaded Functions in the group can be obtained
through the interface of OverloadedFunction. The same should also apply to Construc-
tors and Operators.

The idea is that (direct) scope members (i.e. metaobjects accessible through Scope::member(...))
should have unique names.

39

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

The Scope returned by the scope member function of every single Function in a Over-
loadedFunction is the same as the scope of that OverloadedFunction, i.e. the scope of a
Function can be a Namespace or a Class but not a OverloadedFunction.

4.1.15. ClassMember

ClassMember is a Named and Scoped metaobject that reflects a member of a class. It
has the following requirements:

• static Specifier access_type(void); static member function returning a Spec-
ifier reflecting the access type specifier of the class member (private, protected
or public).

• metaobject_traits<ClassMember::scope>::is_class_member is true_type.

Concrete metaobjects that are models of this concept can also be some of the following:

• Typedef

• Class

• Enum

• OverloadedFunction

4.1.16. Constructor

Constructor is a ClassMember and a Function that reflects a constructor and requires
the following:

• metaobject_traits<Constructor>::category is defined as constructor_tag.

• The result of Constructor::result_type() is the same as the result of Constructor::scope().

4.1.17. Operator

Operator is a Function and possibly a ClassMember that reflects an operator and requires
the following:

• metaobject_traits<Operator>::category is defined as operator_tag.

4.1.18. OverloadedFunction

OverloadedFunction is a Named and Scoped metaobject and possibly a ClassMember that
reflects a set of overloaded functions, i.e. functions with the same name. Overloaded-
Function has the following requirements:

40

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

• static integral_constant<int, number-of-overloads >

overload_count(void); static member function returning the total number of
overloads of the function reflected by OverloadedFunction.

• static Function overload(integral_constant<int, i >); overloaded member
function defined for i ∈ {0, 1, . . . , n − 1}; n = number-of-overloads, each overload
returns a different Function metaobject reflecting the i-th overload in the set of
functions reflected by OverloadedFunction.

• metaobject_traits<OverloadedFunction>::category is defined as overloaded_function_tag.

4.1.19. Template

Template is a Function or a Class metaobject that reflects a function or class template.
It has the following requirements:

• static integral_constant<int, number-of-template-parameters >

template_parameter_count(void); static member function returning the total
number of parameters of the template reflected by Template.

• static TemplateParameter
template_parameter(integral_constant<int, i >); overloaded member func-
tion defined for i ∈ {0, 1, . . . , n − 1}; n = number-of-parameters, each overload
returns a different Parameter metaobject reflecting the i-th parameter of the tem-
plate reflected by Template.

• template < template-parameters... >

static Instantiation instantiation(void); static member template function
returning an Instantiation reflecting the instantiation of the template with the spec-
ified parameters. The template-parameters passed to this function must be valid
template parameters for the reflected template.

• metaobject_traits<Template>::is_template is defined as true_type.

4.1.20. TemplateParameter

TemplateParameter is a Typedef or a NamedConstant that reflects a template parameter.
In class templates the types of member variables, typedefs and the return value type
and parameters of member functions may be TemplateParameter metaobjects.

• static integral_constant<int, position-of-parameter> postion(void); static
member function returning the postion of the template parameter.

• The scope member function inherited from Scoped returns a Template reflecting
the template which defined this template parameter.

• metaobject_traits<TemplateParameter>::is_template is defined as true_type.

41

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

The metaobject_traits<TemplateParameter>::category typedef should be used to
distinguish between type and non-type template parameters.

4.1.21. Instantiation

Instantiation is a Function or Class metaobject that reflects a templated function or
class for which the following is required:

• static Template model(void); static member function returning a Template
reflecting the template that the class or function (reflected by an Instantiation) is
an instantiation of.

• metaobject_traits<Instantiation>::has_template is defined as true_type.
This trait is used to distinguish classes and functions which are instantiations of a
template from non-templated classes and functions.

4.1.22. Enum

Enum is a Type and a Scope that reflects an enumerated type with the following require-
ments:

• metaobject_traits<Enum>::category is defined as enum_tag.

• The members of Enum are only NamedConstant metaobjects.

4.1.23. Inheritance

Inheritance is a Metaobject that is reflecting class inheritance and has the following
requirements:

• static Specifieraccess_type(void); static member function returning a access-
type Specifier that reflects the inheritance access type (private, protected or pub-
lic).

• static Specifierinheritance_type(void); static member function returning an
inheritance-type Specifier that reflects the inheritance access type (virtual or non-
virtual).

• static Class base_class(void); static member function returning a Class re-
flecting the base class in the inheritance.

• static Class derived_class(void); static member function returning a Class
reflecting the derived class in the inheritance.

• metaobject_traits<Inheritance>::category is defined as inheritance_tag.

42

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

4.1.24. Variable

Variable is a Named and Scoped metaobject and possibly a ClassMember, that reflects
some kind of variable defined in a namespace, class, function, etc. and has the following
requirements:

• static Specifier storage_class(); static member function returning a storage-
class Specifier reflecting the storage class of the variable.

• static Type type(); static member function returning a Type reflecting the type
of the variable.

• metaobject_traits<Variable>::category is defined as variable_tag.

4.1.25. Parameter

Parameter is a Variable that reflects a parameter of a function. The following is required
for metaobjects reflecting parameters:

• static integral_constant<int, position-of-parameter> position(void); static
member function returning the position of the parameter in the function parameter
list declaration.

• metaobject_traits<Parameter>::category is defined as parameter_tag.

• The scope member function inherited from Scoped returns the Function that the
parameter belongs to.

4.1.26. NamedConstant

NamedConstant is a Named and possibly Scoped metaobject reflecting named compile-
time constant values like the non-type template parameters and enumeration values.

• static integral_type<value-type, constant-value> value(void); static mem-
ber function returning the reflected value wrapped in integral_constant.

• metaobject_traits<NamedConstant>::category is defined as constant_tag.

4.2. Reflection

The metaobjects can be provided either via a set of overloaded functions defined in the
std namespace or by a new operator. Both of these approaches have advantages and
disadvantages.

43

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

4.2.1. Reflection functions

In this approach at least two functions should be defined in the std namespace:

• unspecified-type reflected_global_scope(void); (or alternatively mirrored_global_scope())
This function should return a type conforming to the GlobalScope concept, reflect-
ing the global scope. The real type of the result is not defined by the standard,
i.e. it is an implementation detail. If the caller needs to store the result of this
function the auto type specifier should always be used.

• template <typename Type>

unspecified-type reflected(void); (or alternativelly mirrored<Type>()) This
function should return a type conforming to the Type concept, reflecting the Type

passed as template argument to this function. The real type of the result is not
defined by the standard, i.e. it is an implementation detail. If the caller needs to
store the result of this function the auto type specifier should always be used.

Several other similar functions could be added to the list above for reflection of tem-
plates, enumerated values, etc. without defining new rules for what regular function and
template parameters can be. The advantages of using reflection functions are following:

• No need to add a new keyword to the language.

• Reduced chance of breaking existing code. The reflected_global_scope() and
reflected<Type>() (nor mirrored_global_scope() and mirrored<Type>()) func-
tions are currently not defined in the std namespace and therefore should not clash
with existing user code.

This approach has the following disadvantages:

• Less direct reflection. Using this approach it is not possible (at least without
adding new rules for possible values of template and function parameters) to reflect
constructors, overloaded functions and some other things.

4.2.2. Reflection operator

In this approach a new operator (we suggest the name) mirrored(param) (or reflected(param))
should be added (for additional alternatives see below). Depending on param, which
could be a type name, namespace name, template name, overloaded function name,
enumerated value name, etc. the operator should return a Named metaobject reflecting
the specified feature. If the parameter is ommited a type conforming to the GlobalScope
metaobject concept should be returned. The exact types returned by the operators
should be implementation details and if the result needs to be stored in a variable the
auto type specifier should always be used. For example:

//

typedef integral_constant<int, 0> _0;

44

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

typedef integral_constant<int, 1> _1;

typedef integral_constant<int, 2> _2;

typedef integral_constant<int, 3> _3;

//

// reflect the global scope

// meta_gs conforms to the GlobalScope concept

auto meta_gs = mirrored();

static_assert(

decltype(meta_gs.member_count())::value > 0,

"The global scope has no members!"

);

static_assert(

decltype(meta_gs.base_name().size())::value == 0,

"Name of the global scope is not an empty string!"

);

//

// reflect the std namespace

// meta_std conforms to the Namespace concept

auto meta_std = mirrored(std);

static_assert(

is_same<

decltype(meta_gs),

decltype(meta_std.scope())

>::value,

"Namespace std is not in the global scope!"

);

static_assert(

decltype(meta_std.base_name().size())::value == 3,

"Name of the std namespace does not have 3 characters!"

);

static_assert(

decltype(meta_std.base_name().at(_0))::value == ’s’,

"Name of the std namespace does not start with ’s’!"

);

assert(strcmp(meta_std.base_name().c_str(), "std") == 0);

45

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

//

// reflect the errno variable

// meta_errno conforms to the Variable concept

auto meta_errno = mirrored(errno);

//

// reflect the int type

// meta_int conforms to the Type concept

auto meta_int = mirrored(int);

//

// reflect the std::string typedef

// meta_std_string conforms to the Typedef concept

auto meta_std_string = mirrored(std::string);

//

// reflect the std::map template

// meta_std_map conforms to the Template

// and Class concepts

auto meta_std_map = mirrored(std::map);

//

// reflect the std::map<int, std::string> type

// meta_std_map_int_std_string conforms to Class

// and Instantiation concepts

auto meta_std_map_int_std_string =

mirrored(std::map<int, std::string>);

//

// reflect the std::string’s (overloaded) constructors

// meta_std_string_string conforms to

// the OverloadedFunction concept and the individual

// overloads that it allows to traverse conform

// to the Constructor concept

auto meta_std_string_string =

mirrored(std::string::string);

//

// reflect ths std::string’s copy constructor

// meta_std_string_string_copy conforms to

// the Constructor concept

auto meta_std_string_string_copy =

mirrored(std::string::string(const std::string&));

46

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

//

// reflect the std::swap overloaded free function

// meta_std_swap conforms to OverloadedFunction

auto meta_std_swap = mirrored(std::swap);

// reflect the (local) variable i

// meta_i conforms to Variable

int i = 42;

auto meta_i = mirrored(i);

Using a new operator has the following advantages:

• More direct reflection. Even features that could not be reflected by using a (tem-
plated) function could be reflected with an operator.

• More consistent reflection. Everything is reflected with a single operator.

and these disadvantages:

• Requires a new keyword or the usage of an existing keyword in a new context or
the usage of a character sequence that is currently invalid.

• Increased risk of breaking existing code. Could be resolved by using an existing
operator like %, |, etc., or the use of a currently invalid character or character
sequence like @, $ or the usage of a new set of quotations like ‘ (backtick character).
For example:

// instead of:

auto meta_std_string = mirrored(std::string);

// use

auto meta_std_string = %std::string;

// or

auto meta_std_string = |std::string;

// or

auto meta_std_string = @ std::string;

// or

auto meta_std_string = ‘ std::string ‘ ;

The problem with these may be the reflection of the global scope, which when
using some of the above would result in awkward expressions like:

// instead of

auto meta_gs = mirrored();

// use

auto meta_gs = %;

auto meta_gs = |;

auto meta_gs = @ ;

47

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

// or

auto meta_gs = ‘‘ ;

5. Impact On the Standard

The impact on the standard and the existing applications depends mainly on the method
of reflection (functions vs. operators). Reflection functions pose a very small risk of
breaking existing standard-conforming code. The mirrored operator on the other hand
has a considerable potential of breaking existing applications. This can be alleviated by
using existing keywords like % as suggested above.

Since compilers already have all the metadata required to generate the proposed metaob-
jects, making them available to programmers should not pose a big problem to the
compiler vendors.

TODO: to be revised/completed

6. Implementation hints

6.1. Generation of metaobjects

The metaobjects should be generated / instantiated by the compiler only when explic-
itly requested. This also applies to members of the metaobjects. For example when a
Namespace reflecting the std namespace is generated the individual member(...) func-
tions (and the resulting metaobjects) should not be generated automatically unless the
Scope::member(...) function is called or its type queried (by decltype or otherwise).

This should probably improve the compilation times and avoid reflection-related over-
head when reflection is not used.

7. Unresolved Issues

• Normalization of names returned by Named::base_name()

and Named::full_name(): The strings returned by the base_name and full_name

functions should be implementation-independent and the same on every platfor-
m/compiler.

• The syntax of annotation of base-level program constructs with tags and relations.

• Explicit specification of what should be reflected. It might be useful to have the
ability to explicitly specify either what to reflect or what to hide from reflection.
For example the ”whitelisting” (explicitly specifying of what should be reflected) of

48

ISO/IEC JTC1 SC22 WG21 Dnnnn=12-mmmm - Static reflection

namespace or class members could simplify reflective meta-algorithms so that they
would not have to implement complicated filters when traversing scope members,
to hide implementation details and to improve compilation times. It is important
that this functionality is decoupled from the scope member declarations, since it
would allow applications to cherry-pick what should be reflected even in third-
party libraries. This might be a separate feature, but it also could be merged with
the tagging functionality. Applications could tag program constructs in which they
are interested and apply a simple filter based on the tag(s) when traversing scope
members.

• The use of ”generalized attributes” for annotations. Would it be possible (and
wise) to use the generalized attributes (from N2761) to annotate program features
as suggested in subsection 3.5?

8. Acknowledgements

9 References

[1] Mirror C++ reflection utilities (C++11 version), http://kifri.fri.uniza.sk/

~chochlik/mirror-lib/html/.

[2] Mirror - Examples of usage, http://kifri.fri.uniza.sk/~chochlik/

mirror-lib/html/doxygen/mirror/html/examples.html.

[3] Mirror - The Puddle layer - examples of usage, http://kifri.fri.uniza.sk/

~chochlik/mirror-lib/html/doxygen/puddle/html/examples.html.

[4] Mirror - The Rubber layer - examples of usage, http://kifri.fri.uniza.sk/

~chochlik/mirror-lib/html/doxygen/rubber/html/examples.html.

[5] Mirror - The Lagoon layer - examples of usage, http://kifri.fri.uniza.sk/

~chochlik/mirror-lib/html/doxygen/lagoon/html/examples.html.

[6] Mirror - Compile-time strings http://kifri.fri.uniza.sk/~chochlik/

mirror-lib/html/doxygen/mirror/html/d5/d1d/group__ct__string.html.

A. Examples of metaobjects

This appendix contains several examples of how the generated metaobjects should look
like for various base-level program constructs.

auto meta_int = mirrored(int);

49

http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/mirror/html/examples.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/mirror/html/examples.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/puddle/html/examples.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/puddle/html/examples.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/rubber/html/examples.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/rubber/html/examples.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/lagoon/html/examples.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/lagoon/html/examples.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/mirror/html/d5/d1d/group__ct__string.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/doxygen/mirror/html/d5/d1d/group__ct__string.html

	Introduction
	Motivation and Scope
	Usefullness of reflection
	Motivational examples
	Factory generator

	Design Decisions
	Desired features
	Layered approach and extensibility
	Basic metaobjects
	Mirror
	Puddle
	Rubber
	Lagoon

	Class generators
	Compile-time vs. Run-time reflection
	Annotations and relations

	Technical Specifications
	Metaobject Concepts
	Categorization and Traits
	String
	Metaobject
	Specifier
	Named
	Scoped
	Named and Scoped
	Scope
	Namespace
	GlobalScope
	Type
	Typedef
	Class
	Function
	ClassMember
	Constructor
	Operator
	OverloadedFunction
	Template
	TemplateParameter
	Instantiation
	Enum
	Inheritance
	Variable
	Parameter
	NamedConstant

	Reflection
	Reflection functions
	Reflection operator

	Impact On the Standard
	Implementation hints
	Generation of metaobjects

	Unresolved Issues
	Acknowledgements
	9 References
	Examples of metaobjects

