
Nxxxx- A case for strong static reflection

Document number: Nxxxx
Date: 2015-03-12

Project: Programming Language C++, SG7, Reflection
Reply-to: Matúš Chochĺık(chochlik@gmail.com)

A case for strong static reflection

Matúš Chochĺık

Abstract In N3996 [1] and N4111 [2] we proposed the design and some hints on possible
implementation of a compile-time reflection facility for standard C++. N3996 contained
list of possible use-cases and a discussion about the usefulness of reflection. During the
presentation of N4111 concerns were expressed about the level-of-detail and scope of
the presented proposal and possible dangers of giving non-expert language users a too
powerful tool to use and dangers for the implementers of this proposal. Examples and
more detailed description of use cases were called for. This paper aims to address these
issues.

Contents

1. Introduction 2

2. Use cases 3
2.1. Portable (type) names . 3
2.2. Logging . 3
2.3. Simple serialization . 7
2.4. Source text-based metaprogramming . 9
2.5. Cross-cutting aspects . 11

3 References 18

A. Additional use cases 18
A.1. SQL schema generation . 18
A.2. Implementing delegation or decorators . 20
A.3. Structure data member transformations 23

B. Additions to N4111 24
B.1. Source file and line . 25
B.2. For each element in Metaobject sequence 25
B.3. The MetaPositional concept . 25

1

mailto:chochlik@gmail.com

Nxxxx- A case for strong static reflection

B.4. Position of a base in the list of base classes 26
B.5. Pointers to reflected variables and functions 26
B.6. Context-dependent reflection . 27
B.7. Turning compile-time strings into identifiers 27

1. Introduction

There is a wide range of computer programming scenarios in which the programmer has
to (or had to) manualy implement some generic boilerplate code doing the same thing
on multiple different types (or other language constructs, like namespaces, constructors,
etc.). For example accessing member variables or calling free or member functions and
operators in an uniform manner, converting data between the language’s intrinsic repre-
sentation and external formats, implementing delegation or some of the other established
design patterns, etc.

With the right tools most of these tasks could be properly algorithmized, encapsulated
into some form of parametric ’callable’ and then invoked with appropriate arguments.

The C/C++ preprocessor and C++’s templates were devised to help dealing with
some of such cases and later gave rise to particular forms of metaprogramming, which
have since become relatively popular. However, while preprocessor and template-based
metaprogramming is being put to good use by more and more libraries and applications
written in C++, we are starting to hit the limits of these tools.

The limits stem from the fact, that while we can now use the C++’s type system as a
(meta)programming language of its own and a C++ compiler as its interpreter and write
complicated metaprograms automatically generating a lot of code which we previously
had to write manually, the programmer still needlessly has to do a lot of things manually.
Just to mention a few; if we want portable type names, we usually have to hardcode
them, if we want to create an identifier programmatically we need preprocessor token
pasting, we cannot programmatically enumerate all member variables or base classes of
a class, all operators working on a particular type, etc.

A C++ compiler processing a translation unit has access to a large amount of very useful
metadata, but unfortunately shares only a tiny amount of it with the programmer. Not
so long ago the type-traits – introspection primitives, many of which rely on some sort
of compiler ’magic’ (a.k.a. reflection) were introduced. Before that the only ’reflection-
facility’ in C++ was the typeid operator.

The aim of this paper is to show that we can and should be able to get much more
information from the compiler and why that would be useful. Since this paper is a
follow-up to N3996 and N4111, it also indicates how the metaobjects proposed in N4111
would be usable in the individual use-cases.

2

Nxxxx- A case for strong static reflection

2. Use cases

This section describes several common use-cases of reflection ranging from trivial to
fairly advanced. These use-cases require only limited reflection support. Appendix A
contains several additional

2.1. Portable (type) names

One of the notorious problems of std::type_info is that the string returned by its
name member function is not standardized and is not even guaranteed to return any
meaningful, unique human-readable string, at least not without demangling, which is
platform specific. Furthermore the returned string is not constexpr and cannot be
reasoned about at compile-time and is applicable only to types. One other problem
with typeid that it is not aware of typedefs. In some cases we would like to obtain
the typedef name, instead of the ’real’ name of the type or a class member or function
parameter.

The ability to uniquely map any type used in a program to a human-readable, portable,
compile-time string has several use-cases described in this paper.

The MetaNamed concept from N4111 reflects named language constructs and provides
the base_name and full_name metafunctions, returning their basic name without any
qualifiers or decorations and a fully-qualified portable type name.

2.2. Logging

When logging the execution of functions (especialy templated ones) it is sometimes
desirable to also include the names of the parameter types or even the names of the
parameters and other variables.

The best we can do with just the std::type_info is the following:

#if __PLATFORM_ABC__

std::string demangled_type_name(const char*) { /* implementation 1 */ }

#else if __PLATFORM_MNO__

std::string demangled_type_name(const char*) { /* implementation 2 */ }

#else if __PLATFORM_XYZ__

std::string demangled_type_name(const char*) { /* implementation N */ }

#else

std::string demangled_type_name(const char* mangled_name)

{

// don’t know how to demangle this; let’s try our luck

return mangled_name;

}

3

Nxxxx- A case for strong static reflection

#endif

template <typename T>

T min(const T& a, const T& b)

{

log() << "min<"

<< demangled_type_name(typeid(T).name())

<< ">(" << a << ", " << b << ") = ";

T result = a<b?a:b;

log() << result << std::endl;

return result;

}

Which may or may not work, depending on the platform.

With the help of reflection as proposed in N4111 we could do:

template <typename T>

T min(const T& a, const T& b)

{

log() << "min<"

<< full_name<mirrored(T)>()

<< ">(" << a << ", " << b << ") = ";

T result = a<b?a:b;

log() << result << std::endl;

return result;

}

The __PRETTY_FUNCTION__ macro generated by the compiler could be also used in this
case, but the format of the string which this macro expands into is not customizable
(which may be necessary for logs formatted in XML, JSON, etc.

A more elaborated output containing also the parameter names could be achieved by
using reflection:

template <typename T>

T min(const T& a, const T& b)

{

log() << "function: min<"

<< full_name<mirrored(T)>()

<< ">"

4

Nxxxx- A case for strong static reflection

<< std::endl

<< base_name<mirrored(a)>() << ": "

<< a << std::endl

<< base_name<mirrored(b)>() << ": "

<< b << std::endl;

T result = a<b?a:b;

log() << base_name<mirrored(result)>() << ": "

<< b << std::endl;

return result;

}

It is true that the lines:

<< base_name<mirrored(a)>() << ": "

<< base_name<mirrored(b)>() << ": "

could be replaced by preprocessor stringization or just hard coded strings, like

<< BOOST_PP_STRINGIZE(a) << ": "

<< BOOST_PP_STRINGIZE(b) << ": "

or

<< "a: "

<< "b: "

but the compiler would not force the programmer to change the macro parameter or the
content of the string the if the parameters a and b were renamed for example to first

and second. If would enforce the change if reflection was used.

Furthermore, if the MetaFunction concept was implemented and if it was possible to
reflect the ’current function’ (i.e. to get a MetaFunction from inside of a function
body via some invocation of the reflection operator), then even more would be possible;
The function name and even the parameter names could be obtained from reflection and
encapsulated into a function.

template <typename MetaFunction, typename ... P>

void log_function_exec(MetaFunction, const std::tuple<P&...>& params)

{

log() << "function: "

<< base_name<MetaFunction>()

<< std::endl;

// obtain the MetaParameter(s) from the MetaFunction

// and print them pairwise with the values from params.

5

Nxxxx- A case for strong static reflection

for_each<parameters<MetaFunction>>(

[¶ms](auto meta_param)

{

typedef decltype(meta_param) MP;

log() << base_name<MP>() << ": "

<< std::get<position<MP>::value>(params)

<< std::endl;

}

);

}

template <typename T>

T min(T a, T b)

{

log_function_exec(mirrored(this::function), std::tie(a, b));

/* ... */

}

template <typename T>

T max(T a, T b)

{

log_function_exec(mirrored(this::function), std::tie(a, b));

/* ... */

}

template <typename T>

T avg(T a, T b)

{

log_function_exec(mirrored(this::function), std::tie(a, b));

/* ... */

}

This example used the following features:

• function reflection,

• function parameter reflection,

• use of metaobject sequences,

• use of the reflection operator,

• base names and the MetaNamed concept.

6

Nxxxx- A case for strong static reflection

2.3. Simple serialization

We need to serialize the instances of selected classes into a structured external format like
XML, JSON, XDR or even into a format like Graphviz dot for the purpose of creating
a visualization of a static class or dynamic object hierarchy or graph.

Reflection makes this task trivial1:

template <typename T>

void to_xml(const T& instance, std::true_type atomic)

{

typedef mirrored(T) MetaType;

std::cout << "<" << base_name<MetaType>() << ">";

std::cout << instance;

std::cout << "</" << base_name<MetaType>() << ">";

}

template <typename T>

void to_xml(const T& instance)

{

to_xml(instance, std::is_fundamental<T>());

}

template <typename T>

void to_xml(const T& instance, std::false_type atomic)

{

typedef mirrored(T) MetaType;

std::cout << "<" << base_name<MetaType>() << ">";

for_each<base_classes<MetaType>>(

[](auto meta_inheritance)

{

typedef decltype(meta_inhertance) MetaInh;

typedef original_type<base_class<MetaInh>>::type BT;

to_xml(const BT&(instance));

}

);

for_each<members<MetaType>>(

[](auto meta_cls_mem)

{

typedef decltype(meta_cls_mem) MetaClsMem;

1 Admittedly this is not the most clever XML schema ever devised, but let’s stick to the basics.

7

Nxxxx- A case for strong static reflection

typedef original_type<type<MetaClsMem>>::type MT;

if(std::is_base_of<

meta_variable_tag,

metaobject_category<MetaClsMem>

>())

{

auto mvp = pointer<MetaClsMem>::get();

std::cout << "<" << base_name<MetaClsMem> << ">";

to_xml(instance.*mvp);

std::cout << "</" << base_name<MetaClsMem> << ">";

}

}

);

std::cout << "</" << base_name<MetaType>() << ">";

}

Where necessary explicit specializations or function overloads can override the generic
implementation:

template <typename Bool>

void to_xml(const std::string& instance, Bool)

{

std::cout << "<string>";

std::cout << instance;

std::cout << "</string>";

}

This use-case shows the following:

• class member reflection,

• inheritance reflection,

• class member variable reflection,

• use of metaobject sequences,

• use of the interface of various metaobjects,

• use of the reflection operator,

• metaobject categorization,

• base names and the MetaNamed concept.

8

Nxxxx- A case for strong static reflection

2.4. Source text-based metaprogramming

In scripting languages metaprogramming often takes the form of dynamically creating a
new script purely through text operations followed by the execution of that script.

While using this approach is more complicated with compiled languages it is not unheard
of. A C++ source can be created by a program in C++, compiled by a compiler (invoked
from that same or from a different program) into a shared library and then dynamically
loaded and executed.

In some cases this approach could be used to generate source code on a local machine,
which is then compiled and executed on a remote machine with a different architecture.

class foo64bit

{

/* ... */

};

class foo32bit

{

/* ... */

};

#if __THIS_IS_64BIT_ARCH

typedef foo64bit default_foo;

#else

typedef foo32bit default_foo;

#endif

struct plugin

{

virtual void process_foo(default_foo&) = 0;

/* ... */

};

We want to programatically create a new logging2 implementation of plugin and we
don’t want to rewrite this program every time the interface is updated.

Furthermore it is possible that we will be generating the code on a 32-bit machine and
then compiling and executing it on a 64-bit machine or vice-versa.

template <typename MetaFunction>

void print_func_impl(MetaFunction)

{

using std::cout;

2 We’re again trying to stick to the basics, here. Much more complicated examples could be devised.

9

Nxxxx- A case for strong static reflection

using std::endl;

// the result can have a typedef-ined type

// and we want to print here the typedef name

cout << base_name<result_type<MetaFunction>>() << " ";

cout << base_name<MetaFunction>() << "(";

for_each<parameters<MetaFunction>>(

[](auto meta_param)

{

typedef decltype(meta_param) MetaParam;

if(position<MetaParam>() > 0)

{

cout << ", ";

}

// the parameter can have a typedef-ined type

// and we want to print here the typedef name

cout << base_name<type<MetaParam>>() << " ";

cout << base_name<MetaParam>();

}

);

cout << base_name<MetaFunction>() << ")";

cout << " override" << endl;

cout << "{" << endl;

cout << " _do_log_call<MetaFunction>(" << endl;

for_each<parameters<MetaFunction>>(

/* Print out a parameter list for the call */

);

cout << ");" << endl;

/* Print out the rest of the implementation */

cout << "}" << endl;

}

void main(void)

{

using std::cout;

using std::endl;

cout << "#include <foo/plugin.hpp>" << endl;

10

Nxxxx- A case for strong static reflection

/* etc. */

cout << "class logging_plugin" << endl;

cout << " : virtual public plugin" << endl;

cout << "{" << endl;

cout << "private:" << endl;

cout << " template <typename MetaFunction, typename ... P>" << endl;

cout << " void _do_log_call(const P&...);" << endl;

cout << "public:" << endl;

for_each<members<mirrored(plugin)>>(print_func_impl);

cout << "};" << endl;

return 0;

}

The example above could be semi-automated using the preprocessor and (demangled)
type_info::name. The problem is that type_info is not aware of the fact that the
default_foo parameter type is a typedef and it would instead return either "foo64bit"
or "foo32bit" based on the architecture on which the script was generated.

In N4111 (and subsequent papers) it is proposed that reflection is aware of typedefs
and distinguishes between typedefs and their underlying types.

This example shows the following features:

• typedef reflection,

• class member reflection,

• use of the reflection operator,

• use of the base_name, type and original_type templates.

2.5. Cross-cutting aspects

We need to execute the same action (or a set of actions) at the entry of or at the exit
from the body of a function (from a set of multiple functions meeting some conditions)
each time it is called.

The action may be related to logging, debugging, profiling, but also access control,
etc. The condition which selects the functions for which the action is invoked might be
something like:

• each member function of a particular class,

• each function defined in some namespace,

11

Nxxxx- A case for strong static reflection

• each function returning values of a particular type or having a particular set of
parameters,

• each function whose name matches a search expression,

• each function declared in a particular source file,

• etc. and various combinations of the above.

It may not be possible to tell in advance the relations between the aspects and the indi-
vidual functions or these relations may vary for different builds or build configurations.
Furthermore we want to be able to quickly change the assignment of actions to functions
in one place instead of going through the whole project source which may consists of
dozens or even hundreds of files.

We want for example temporarily enable logging of the entry and exit of each member
function of class foo, or we need to count the number of invocations of functions defined
in the bar namespace with names not starting with an underscore, or we want to throw
the not_logged_in exception at the entry of each member function of class secure if
the global user_logged_in function returns false.

Without reflection something like this could be implemented in the following way:

class logging_aspect

{

public:

template <typename ... P>

logging_aspect(const char* func_name, P&&...)

{

// write to clog

}

};

class profiling_aspect

{

/* ... */

};

class authorization_aspect

{

public:

template <typename ... P>

authorization_aspect(const char* func_name, P&&...)

{

if(contains(func_name, "secure"))

{

if(!::is_user_logged_in())

12

Nxxxx- A case for strong static reflection

{

throw not_authorized(func_name);

}

}

}

};

template <typename RV, typename ... P>

class func_aspects

: logging_aspect

, profiling_aspect

, authorization_aspect

/* ... etc. ... */

{

public:

func_aspects(

const char* name,

const char* file,

unsigned line,

P&&... args

): logging_aspect(name, file, line, args...)

, profiling_aspect(name, file, line, args...)

, authorization_aspect(name, file, line, argc...)

/* ... etc. ... */

{ }

};

template <typename RV, typename ... P>

func_aspects<RV, P...>

make_func_aspects(

const char* name,

const char* file,

unsigned line,

P&&...args

);

void func1(int a, int b)

{

auto _fa = make_func_aspects<void>(

__func__,

__FILE__,

__LINE__,

a, b

13

Nxxxx- A case for strong static reflection

);

/* function body */

}

double func2(double a, float b, long c)

{

auto _fa = make_func_aspects<double>(

__func__,

__FILE__,

__LINE__,

a, b, c

);

/* function body */

}

namespace foo {

long func3(int x)

{

auto _fa = make_func_aspects<long>(

__func__,

__FILE__,

__LINE__,

x

);

/* function body */

}

} // namespace foo

Obviously this is very repetitive and it can get quite tedious and error-prone to supply
all this information to the aspects in each function manually. Also if the signature or the
name of the function changes the construction of the func_aspects instance must be
updated accordingly. With the help of reflection things can be simplified considerably:

template <typename MetaFunction, typename Enabled>

class logging_aspect_impl;

template <typename MetaFunction>

class logging_aspect_impl<MetaFunction, false_type>

{ };

template <typename MetaFunction>

class logging_aspect_impl<MetaFunction, true_type>

{

14

Nxxxx- A case for strong static reflection

public:

logging_aspect_impl(void)

{

clog

<< base_name<MetaFunction>()

<< "("

/* ... */

<< ")"

<< endl;

}

};

template <typename MetaFunction>

struct logging_enabled

: integral_constant<

bool,

is_base_of<mirrored(std), scope<MetaFunction>>() &&

is_same<std::string, original_type<result<MetaFunction>>::type> &&

/* ... etc. ... */

>

{ };

template <typename MetaFunction>

using logging_aspect =

logging_aspect_impl<

MetaFunction,

typename logging_enabled<MetaFunction>::type

>;

template <typename MetaFunction, typename Enabled>

class authorization_aspect_impl;

template <typename MetaFunction>

class authiorization_aspect_impl<MetaFunction, false_type>

{ };

template <typename MetaFunction>

class authorization_aspect_impl<MetaFunction, true_type>

{

public:

authorization_aspect_impl(void)

{

if(!::is_user_logged_in())

{

15

Nxxxx- A case for strong static reflection

throw not_authorized(

full_name<MetaFunction>()

);

}

}

};

template <typename MetaFunction>

struct autorization_enabled

: integral_constant<

bool,

is_base_of<mirrored(foo::bar), scope<MetaFunction>>() &&

constexpr_starts_with(base_name<MetaFunction>(), "secure_") &&

/* ... etc. ... */

>

{ };

template <typename MetaFunction>

using authorization_aspect =

authorization_aspect_impl<

MetaFunction,

typename authorization_enabled<MetaFunction>::type

>;

template <typename MetaFunction>

class func_aspects

: logging_aspect<MetaFunction>

, profiling_aspect<MetaFunction>

, authorization_aspect<MetaFunction>

/* ... etc. ... */

{

public:

};

void func1(int a, int b)

{

func_aspects<mirrored(this::function)> _fa;

/* function body */

}

double func2(double a, float b, long c)

{

func_aspects<mirrored(this::function)> _fa;

/* function body */

16

Nxxxx- A case for strong static reflection

}

namespace foo {

long func3(int x)

{

func_aspects<mirrored(this::function)> _fa;

/* function body */

}

} // namespace foo

In this case the same expression is used in all functions regardless of their name and sig-
nature and the aspects get all the information they require from the metaobject reflecting
the function. All the data obtained from the metaobjects is available at compile-time so
various specializations of the aspect classes can be implemented as required.

This same technique could also be used with instances of classes:

template <typename MetaClass>

class class_aspects

: logging_aspects<MetaClass>

/* ... etc. ... */

{

public:

class_aspects(typename original_type<MetaClass>::type* that);

};

class cls1

{

private:

int member1;

/* ... other members ... */

class_aspect<mirrored(this::class)> _ca;

public:

cls1(void)

: member1(...)

, _ca(this)

{ }

};

Class aspects like these could also be used for logging, monitoring of object instantation,
leak detection, etc.

This use-case shows the following:

• current function reflection,

17

Nxxxx- A case for strong static reflection

• current class reflection.

3 References

[1] Chochĺık M., N3996 - Static reflection, 2014, https://isocpp.org/files/

papers/n3996.pdf.

[2] Chochĺık M., N4111 - Static reflection (rev. 2), 2015, https://isocpp.org/

files/papers/n4111.pdf.

[3] Mirror C++ reflection utilities (C++11 version), http://kifri.fri.uniza.sk/

~chochlik/mirror-lib/html/.

A. Additional use cases

This sections describes further, less common, use-cases for reflection or use-cases requir-
ing advanced reflection features.

A.1. SQL schema generation

We need to create an SQL/DDL (data definition language) script for creating a schema
with tables which will be storing the values of all structures in namespace C++ foo

having names starting with persistent_:

const char* translate_to_sql(const std::string& type_name)

{

if(type_name == "int")

return "INTEGER";

/* .. etc. */

}

template <typename MetaMemVar>

void create_table_column_from(MetaMemVar)

{

if(!std::is_base_of<

variable_tag,

metaobject_category<MetaMemVar>

>()) return;

std::cout << base_name<MetaMemVar>() << " ";

std::cout << translate_to_sql(base_name<type<MetaMemVar>());

18

https://isocpp.org/files/papers/n3996.pdf
https://isocpp.org/files/papers/n3996.pdf
https://isocpp.org/files/papers/n4111.pdf
https://isocpp.org/files/papers/n4111.pdf
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/

Nxxxx- A case for strong static reflection

if(starts_with(base_name<MetaMemVar>(), "id_"))

{

std::cout << " PRIMARY KEY";

}

std::cout << std::endl;

}

template <typename MetaClass>

void create_table_from(MetaClass)

{

if(!std::is_base_of<

class_tag,

metaobject_category<MetaClass>

>()) return;

if(!starts_with(

"persistent_",

base_name<MetaClass>()

)) return;

std::cout << "CREATE TABLE "

<< strip_prefix("persistent_", base_name<MetaClass>())

<< "(" << std::endl;

for_each<members<MetaClass>>(create_table_column_from);

std::cout << ");"

}

template <typename MetaNamespace>

void create_schema_from(MetaNamespace)

{

std::cout << "CREATE SCHEMA "

<< base_name<MetaNamespace>()

<< ";" << std::endl;

for_each<members<MetaNamespace>>(create_table_from);

}

int main(void)

{

create_schema_from(mirrored(foo));

return 0;

19

Nxxxx- A case for strong static reflection

}

This example shows the following features from N4111:

• namespace reflection,

• namespace member reflection,

• class member reflection,

• use of metaobject sequence,

• metaobject categorization,

• base names and the MetaNamed concept.

Furthermore reflection could be used to implement actual object-relational mapping,
together with a library like SOCI, ODBC, libpq, etc. See for example [3].

A.2. Implementing delegation or decorators

We need to create a decorator class, which wraps an instance of another class, implements
similar interface as the original class, writes info about each member function call into
a log and then delegates the call to the private member object:

class foo

{

public:

void f1(void);

int f2(int a, int b);

double f3(float a, long b, double c, const std::string& d);

};

class logging_foo

{

private:

foo _obj;

loglib::log_sink _log;

template <typename MetaFunction, typename ... P>

void _do_log_call(const P&...);

public:

void f1(void)

{

_do_log_call<mirrored(this::function)>();

20

Nxxxx- A case for strong static reflection

_obj.f1();

}

int f2(int a, int b);

{

_do_log_call<mirrored(this::function)>();

return _obj.f2(a, b);

}

double f3(float a, long b, double c, const std::string& d);

{

_do_log_call<mirrored(this::function)>();

return _obj.f3(a, b, c, d);

}

};

Obviously the definition of logging_foo is very repetitive and if this pattern is recurring
in the code it may lead to subtle, hard to track bugs, so we may wish to automate the
implementation.

Reflection to the rescue!

template <typename Wrapped>

class logging_base

{

protected:

Wrapped _obj;

loglib::log_sink _log;

template <typename MetaFunction, typename ... P>

void _do_log_call(const P&...);

};

logging_base is a common virtual base class holding the wrapped object and the log
sink.

template <typename Wrapped, typename MetaFunction>

class logging_helper

: virtual public logging_base<Wrapped>

{

public:

template <typename ... P>

auto identifier(base_name<MetaFunction>::value)(P&& ... p)

{

this->_do_log_call<MetaFunction>(std::forward<P>(p)...);

21

Nxxxx- A case for strong static reflection

auto mfp = pointer<MetaFunction>::get();

return (this->_obj.*mfp)(std::forward<P>(p)...);

}

};

logging_helper is a unit implementing the delegation of a single function call from the
interface of the Wrapped class.

The identifier operator is used here to define the name of the member function to be
the same as the name of the wrapped function.

If the idea of the identifier operator is scrapped, it would still be doable in terms of
the named_mem_var template as defined in N4111, or some variation on that theme.

template <typename Wrapped, typename ... MetaFunctions>

class logging_helpers

: public logging_helper<Wrapped, MetaFunctions>...

{ };

logging_helpers inherits from multiple logging_helper units each having a single
MetaFunction reflecting respective member functions of the Wrapper class.

template <typename Wrapped, typename MetaFunctionSeq, typename IdxSeq>

class logging_impl;

template <typename Wrapped, typename MetaFunctionSeq, std::size_t ... I>

class logging_impl<Wrapped, MetaFunctionSeq, std::index_sequence<I...>>

: public logging_helpers<Wrapped, at<MetaFunctionSeq, I>...>

{ };

logging_impl uses a standard index_sequence to extract the individual MetaFunc-
tions from the metafunction sequence and passes them to logging_helpers as a pa-
rameter pack.

template <typename Wrapped>

class logging

: public logging_impl<

Wrapped,

members<mirrored(Wrapped)>,

std::make_index_sequence<size<members<mirrored(Wrapped)>>::value>

>

{ };

typedef logging<foo> logging_foo;

The logging template makes the use of logging_impl convenient.

22

Nxxxx- A case for strong static reflection

Note that the metaobject sequence ’returned’ by members<...> should be filtered to
contain only MetaFunctions.

This programming pattern of creating a new class with the same or similar interface than
another class is quite frequent and includes not just typical decorators or delegation but
also adapters, type-erasures, mock classes used for unit testing, etc.3.

The following features are shown in this use-case:

• class member reflection,

• class member function reflection,

• use of the reflection operator,

• use of the identifier operator or the named_mem_var templates.

A.3. Structure data member transformations

We need to create a new structure, which has data members with the same names as an
original structure, but we need to change some of the properties of the data members
(for example their types).

For example we need to transform:

struct foo

{

bool b;

char c;

double d;

float f;

std::string s;

};

into

struct rdbs_table_placeholder_foo

{

column_placeholder<bool>::type b;

column_placeholder<char>::type c;

column_placeholder<double>::type d;

column_placeholder<float>::type f;

column_placeholder<std::string>::type s;

};

3See also the use-case described in A.3

23

Nxxxx- A case for strong static reflection

By using the proposed identifier operator, class member reflection and multiple in-
heritance we can create a new structure that is nearly equivalent to rdbs_table_foo

via metaprogramming:

template <typename MetaVariable>

struct rdbs_table_placeholder_helper

{

typename column_placeholder<

typename original_type<type<MetaVariable>>::type

>::type identifier(base_name<MetaVariable>::value);

};

template <typename ... MetaVariables>

struct rdbs_table_placeholder_helpers

: rdbs_table_placeholder_helper<MetaVariables>...

{ };

template <typename MetaVariableSeq, typename IdxSeq>

class rdbs_table_impl;

template <typename MetaVariableSeq, std::size_t ... I>

class rdbs_table_impl<MetaFunctionSeq, std::index_sequence<I...>>

: public rdbs_table_placeholder_helpers<at<MetaFunctionSeq, I>...>

{ };

typedef rdbs_table_impl<

members<mirrored(foo)>,

std::make_index_sequence<size<members<mirrored(foo)>>::value>

> rdbs_table_placeholder_foo;

This examples uses the following features.

• class member reflection,

• use of the reflection operator,

• use of the identifier operator or the named_mem_var templates.

B. Additions to N4111

The examples described in this paper use several features not described in N4111 (these
will be added to the next revision of that paper):

24

Nxxxx- A case for strong static reflection

B.1. Source file and line

Template class source_file should be defined for Metaobjects and should ”return” a
compile-time string containing the path to the source file where the base-level construct
reflected by the metaobject was declared.

template <>

struct source_file<MetaObject>

: String

{ };

Template class source_line should be defined for Metaobjects and should inherit from
integral_constant<unsigned, Line> where Line is the line number in the source file
where the base-level construct reflected by the metaobject was declared.

template <>

struct source_file<MetaObject>

: String

{ };

B.2. For each element in Metaobject sequence

Template function for_each, should be defined for every metaobject sequence and
should call the specified unary functor taking values of types conforming to the same
metaobject concept as the elements of the metaobject sequence as arguments.

template <typename MetaobjectSequence, typename UnaryFunc>

void for_each(UnaryFunc func)

{

/* call func on each element in the sequence */

}

The interface of MetaobjectSequence as defined in N4111 should be enough to define
a single generic implementation of this function without the need to write specialization
for every type modelling this concept.

B.3. The MetaPositional concept

The MetaPositional concept defines the interface for metaobjects reflecting base-level
constructs having a fixed position, like function or template parameters, class inheritance
clauses, etc.

The has_position template class can be used to distinguish metaobjects modelling this
concept. Is should inherit from true_type for MetaPositionals and from false_type

otherwise.

25

Nxxxx- A case for strong static reflection

template <typename X>

struct has_position

: false_type

{ };

template <>

struct has_position<MetaPositional>

: true_type

{ };

The position template class inheriting from integral_constant<size_t, I> type
(where I is a zero-based position of the reflected base-level language construct) can
be used to obtain the value of the index.

template <typename T>

struct position;

template <>

struct position<MetaPositional>

: integral_constant<size_t, I>

{ };

B.4. Position of a base in the list of base classes

Every model of MetaInheritance should also conform to the MetaPositional concept
described above.

B.5. Pointers to reflected variables and functions

For models of MetaVariable and MetaFunction the pointer template class should
be defined as:

template <>

struct pointer<MetaVariable>

{

typedef _unspecified_ type;

static type get(void);

};

template <>

struct pointer<MetaFunction>

{

typedef _unspecified_ type;

26

Nxxxx- A case for strong static reflection

static type get(void);

};

For MetaVariables or MetaFunctions reflecting namespace-level variables or func-
tions the get function should return a pointer to that variable or function respectively.

If the MetaVariable or MetaFunction reflect class members then the get function
should return a pointer to data member or pointer to member function respectively.

B.6. Context-dependent reflection

Special expressions in the form of this::{namespace,class,function} should be added
as valid arguments for the reflection operator and should return metaobjects depending
on the context where such invocation of the reflection operator was used.

• mirrored(this::namespace) reflects the namespace inside of which the reflection
operator was invoked.

• mirrored(this::class) reflects the class inside of which the reflection operator
was invoked. This should also work inside of member functions, constructors and
operators of that class.

• mirrored(this::function) reflects the function inside of which the reflection
operator was invoked.

B.7. Turning compile-time strings into identifiers

Inspired by the idea of name literals as mentioned on the WG mailing list, we suggest to
consider adding a new functionality to the core language, allowing to specify identifiers as
compile-time constant C-string literal expression, i.e. expressions evaluating into values
of constexpr const char [N].

This could be implemented either by using a new operator (or recycling an old one),
or maybe by using generalized attributes. In the use-cases described in this paper the
identifier operator is used, but we do not have any strong preference for the name of
this operator.

For example:

identifier("int") identifier("main")(

int idenitifier("argc"),

const identifier("char")* identifier("argv")

)

{

using namespace identifier(base_name<mirrored(std)>::value);

27

Nxxxx- A case for strong static reflection

for(int i=0; i<argc; ++i)

{

cout << argv[i] << endl;

}

return 0;

}

would be equivalent to

int main(int argc, const char* argv)

{

using namespace std;

/* ... */

}

The content of the constexpr string passed as the argument to identifier should be
encoded in the source character set and subject to the same restrictions which are placed
on identifiers.

The idea is to replace preprocessor token pasting with much more flexible constexpr
C++ expressions. Adding this feature would also allow to remove the named_mem_var

and named_typedef metafunctions which were in N4111 defined as part of the interface
of MetaNamed.

This addition has the potential to complicate the processing of a translation unit by
the compiler and would logically fit somewhere between phases 6 and 8 as described in
the standard. If the use of regular templates for the purpose of creating the constexpr
identifier strings would be too complicated to implement, phase 6 could be extended
to allow simple compile-time text manipulation (comparison, concatenation, substrings,
etc.) by a set of dedicated functions.

28

	Introduction
	Use cases
	Portable (type) names
	Logging
	Simple serialization
	Source text-based metaprogramming
	Cross-cutting aspects

	3 References
	Additional use cases
	SQL schema generation
	Implementing delegation or decorators
	Structure data member transformations

	Additions to N4111
	Source file and line
	For each element in Metaobject sequence
	The MetaPositional concept
	Position of a base in the list of base classes
	Pointers to reflected variables and functions
	Context-dependent reflection
	Turning compile-time strings into identifiers

