
The Pegasus
Heterogeneous
Multidatabase System

Rafi Ahmed, Philippe De Smedt, Weimin Du,

William Kent, Mohammad A. Ketabchi, Witold A. Litwin,

Abbas Rafii, and Ming-Chien Shan

Hewlett-Packard Laboratories

Benefiting from object-
oriented data modeling

and programming
capabilities, Pegasus

uses both type and
function abstractions to

resolve mapping and
integration problems.

P egasus, a heterogeneous multidatabase management system being devel-
oped by the Database Technology Department at Hewlett-Packard Lab-
oratories, responds to the need for effective access and management of

shared data across in a wide range of applications. Pegasus provides facilities for
multidatabase applications to access and manipulate multiple autonomous heter-
ogeneous distributed object-oriented, relational, and other information systems
through a uniform interface. It is not just a front-end approach to multiple
databases but a complete data management system that integrates various native
and local databases.

The literature describes a number of heterogeneous database projects and
systems. Litwin. Mark, and Roussopoulos’ and Thomas et al.’ survey prototype
and commercial heterogeneous multidatabase management systems, and Gupta’
provides a collection of papers on the subject.

A heterogeneous multidatabase system must support various database systems
with different database models, languages, and services. One approach to reduce
the number of mappings between diverse data systems is to define a common data
model and language. For instance, Dataplex’ maps the underlying data models to
a relational data definition. Since a basic relational model is not sufficient to
capture the integrated semantics’ of underlying systems, the Amoco Distributed
Database System” uses an extended relational data model to integrate relational,
network, and hierarchical databases.

Multibase,‘.” an ambitious project that has interesting similarities to and differ-
ences from Pegasus, provides a uniform and integrated interface for retrieving
data from existing heterogeneous databases. Multibase uses a functional data

December 1991

model to represent schema of various
existing databases. A view mechanism
defines the integration of local data-
base schemas. The view mechanism also
specifies the rules for resolving data
mismatches.

Multibase uses the function abstrac-
tion in the Daplex schema language for
writing integration rules and providing
operations that database management
systems (DBMSs) do not provide. The
Multibase experience has indicated the
need for a more extensible framework
for dealing with the peculiarities of var-
ious DBMSs.

Pegasus takes advantage of object-
oriented data modeling and program-
ming capabilities. It uses both type and
function abstractions to deal with map-
ping and integration problems. Func-
tion implementation can be defined in
an underlying database language or a
programming language. Data abstrac-
tion and encapsulation facilities in the
Pegasus object model provide an exten-
sible framework for dealing with vari-
ous kinds of heterogeneities in the tra-
ditional database systems and
nontraditional data sources ranging from
simple text to complex multimedia sys-
tems.

Pegasus data model

Pegasus’object-oriented model serves
as a framework for uniform interopera-
tion of multiple data sources with dif-
ferent data management systems. The
model, based on the Iris object-orient-
ed modeL9 contains three basic con-
structs:

l Types have unique names and rep-
resent collections of objects that share
common characteristics. Types are or-
ganized in a directed acyclic graph that
supports generalization and special-
ization and provides multiple inheri-
tance. A type may be declared to be a
subtype of other types. A function de-
fined on a given type is also defined on
all its subtypes. Objects that are in-
stances of a type are also instances of its
supertypes.

l Objects are uniquely identified by
their object identifiers. Some objects,
such as integers, are self-identifying.
Objects may gain and lose types dynam-
ically. For example, an object repre-
senting a given person may be created
as an instance of the Student type. Lat-

20

er, it may lose the Student type and
acquire the Employee type.

l Functions are the manifestations of
operations and provide mappings among
objects. Properties of, relationships
among, and computations on objects
are expressed in terms of functions.
Arguments and results of functions are
typed. A type can thus be characterized
by the roles it plays in the arguments
and results of various functions.

The unifying data definition and data
manipulation language of Pegasus is the
Heterogeneous Object Structured Que-
ry Language. HOSQL is a functional as
well as object-oriented language that
provides declarative statements to ma-
nipulate multiple heterogeneous data-
bases and to create types, functions,
and objects in both Pegasus and under-
lying local databases. Specifications of
types and functions can also be import-
ed from underlying local databases and
can then be integrated into the Pegasus
native schemas, if so desired.

Databases, types, functions, and in-
stances are defined by HOSQL state-
ments of the form:

CREATE ObjectSpecification AS
ObjectImplementation;

ObjectSpecification is Database or Type
followed by a user-defined name or
Function followed by a function name
and the specification of its arguments
and results. AS ObjectImplementation
is an optional clause that specifies how
the object is created.

Pegasus provides mapping facilities
to generate a Pegasus schema that gives
a local data source the appearance of a
Pegasus database and thus lets the user
access the database with HOSQL que-
ries. The mapping facilities are modu-
lar, with a separate module for each
local data model (such as relational and
network models).

Each module provides mechanisms
for specifying mapping between the data
model of a data source and the data
model of Pegasus, and for translating
queries expressed in HOSQL into the
language of the data source. Mapping
mechanisms are supported by variants
of the AS clause of the Create state-
ment. The example below creates a type
Employee that represents an employee
entity in a relational database. The em-
ployee entity is identified by the prima-
ry key (PK) Empno in the Emprel rela-

tion in the Empdb relational database.
The functions defined on the Employee
type are mapped to the attributes of
employee given in Emprel.

Create Type Employee AS
Relational Empdb.Emprel (PK =
Empno);

Create Function Eno (Employee e)
-> Integer x

As Relational Empdb.EmpreI
(x = Empno);

Create Function Name (Employee
e) -> String n

As Relational Empdb.Emprel
(n = Name);

Create Function Skills (Employee
e) -> String s Many

As Relational Empdb.Emprel
(s = Skill);

In the example above, the mapping and
translation specifications can be fully or
partially automated via special-purpose
tools. Ahmed and Rafii’O describe auto-
matic mapping of relational schemas
to Pegasus schemas.

HOSQL variables, which are refer-
ences to objects in the result or argu-
ment of a function, can be used in
queries and update statements. Vari-
ables range over the domains of types
they refer to. An object can be retrieved
into a variable, which can then be used
to refer to the object. An HOSQL
query can be expressed by following
syntax:

SELECT list of variables or
functions

FOR EACH list of all variables
and their types

WHERE predicate expression;

The SELECT clause lists variables or
functions. The FOR EACH clause quan-
tifies and types all variables used in the
SELECT and WHERE clauses. The
WHERE clause contains a predicate
expression that may involve nestedfunc-
tions, variables, constants, or subque-
ries.

Data integration

Other databases can be connected to
a Pegasus database to provide access to
multiple data sources. Figure 1 shows a
Pegasus database system configuration.

A data source is typically a database,

COMPUTER

although it can be of another type (such
as a file system). Data sources not di-
rectly controlled by Pegasus are called
local data sources. A local data source is
represented in Pegasus by an imported
schema that looks like a Pegasus sche-
ma, but the underlying data is in the
local data source. A complete or partial
mapping of a local schema can be visible
through Pegasus. A native database is
created in Pegasus, and both its schema
and data are managed by Pegasus.

Before a data source can participate
in a Pegasus multidatabase system, the
external characteristics of its system must
be registered with Pegasus. Registra-
tion is carried out at the system level in
a given environment (platform and net-
work). Registration describes data man-
agement systems, network protocols,
network nodes, machine types, etc.

Attachment is an important data in-
tegration facility provided by Pegasus.
Attachment logically extends a native
database with other databases and cre-
ates unified Pegasus schemas. A se-
quence of mappings to one or more
local databases can be labeled, stored,
and later recalled in an attach state-
ment. An attach statement activates a
stored group of mappings and attempts
to establish connections to the named
databases. An attachment can expose a
particular integrated view of the under-
lying data to a group of users.

Multiple data sources can be interop-
erated via Pegasus without having an
integrated global schema. HOSQL state-
ments may refer directly to the individ-
ual imported schemas. Integration in
Pegasus is optional and deals with se-
mantic and schematic heterogeneity
among different databases, all of which
have imported schemas in Pegasus.”

The Pegasus prototype supports one
fairly natural integration technique; it
creates supertypes of types defined in
underlying databases. Suppose the Pe-

By default, Pegasus unifies the native
schema and all imported schemas. The
user-created types, functions, and ob-
jects in the native and imported data-
bases are presumed to be distinct and
disjoint. Names of types and functions
may be prefixed by their database names
to prevent ambiguities. Ambiguities in-
volving the native database will be re-
solved in favor of the native database.
In Pegasus, a single specification of sys-
tem types and functions, as well as liter-
al objects, is shared by native and im-
ported databases.

December 1991

I Integrated
schema y I

integration schema x

Native
schema

Import
schema 1

Import
schema 2

Import
schema n

l *e

Native
database C--..--------------l.--~

,
1

FIJI
autonomy 6 Local data

source 2

\

\
m-w-

Full
autonomy

Figure 1. The Pegasus database system configuration.

gasus schema contains types Program-
mer and Engineer, which might origi-
nate in different databases. Using the
following command, we can create an
abstract supertype Person, which ac-
quires all the common functions from
Programmer and Engineer:

Create Type Person supertype of
Programmer, Engineer:

If both Programmer and Engineer have
functions such as Name and Project,
then the supertype Person acquires these
functions. This mechanism can also be
looked on as upward inheritance. The
following query

Select Name (x), Project (x) For
Each Person x;

Simple mismatches of function names
can be handled by using the Alias fea-
ture of HOSQL, allowing functions with
different names to participate in up-

will retrieve the names and projects of
all programmers and engineers.

ward inheritance as though they had the
same name.

In general, semantic or behavioral
differences among functions in differ-
ent databases cannot be reconciled au-
tomatically. The Pegasus mechanisms
for defining derived and foreign func-
tions allow a database administrator to
specify the appropriate reconciliation
strategy. The body of a derived function
is written with HOSQL statements. The
body of a foreign function can be writ-
ten in any general-purpose program-
ming language and dynamically linked
with Pegasus.

Domain mismatch. The domain mis-
match problem arises when common
concepts are treated in different ways
by different domains in different
spheres.” Consider the concept of mon-
ey. The different domains correspond
to different currencies in which money
might be represented. A sphere is some
scope in which a single domain, that is,
a single currency, is used.

Currencies represent a relatively sim-

21

Schema and domain mappings

Consider two existing databases in an organization. As the
figure shows, a personnel database Empdb stores informa-
tion about full-time employees. A departmental database
Progdb describes programmers and their projects.

In Empdb, employees are identified by their unique employ-
ee number (Eno). The designers of Progdb chose social se-
curity numbers (SSNs) to uniquely identify the programmers.

Some programmers are full-time employees and appear in
both databases. Some employees are not programmers, and
some programmers are not full-time employees. One possible
approach for integrating these databases is to define a new
Pegasus database that maps employee and programmer en-
tities to Employee and Programmer types, respectively.

The mapping in this case is a simple one-to-one mapping.
But more complex mapping algorithms can be encapsulated in
this function. Given this function, you can derive a new Eno
function for the Programmer type that uses the SsnToEno
function to produce an employee number (if any) for a pro-
grammer. The new Eno function for programmers can be used
in a query to find the skills of programmers who are full-time
employees.

The functions defined on type Employee are mapped to at-
tributes of employees in Empdb. Similarly, the functions de-
fined on type Programmer are mapped to attributes of pro-
grammers in Progdb.

The alias statement handles function name mismatches. It
is used here to unify the Name function for both Employees
and Programmers. With this preparation, functions Name and
Eno are defined on both Employee and Programmer types.
One can define a new type Person that is a supertype of Em-
ployee and Programmer types. The new type will acquire the
common functions defined on its subtypes. Therefore, a query
that references the Name of persons retrieves names of both
programmers and employees.

Initially, programmers do not have employee numbers. To In the future, the query processor of Pegasus will be able to
identify the relationship between programmers and employ- automatically use the association between employees and
ees, a conversion function (SsnToEno) is defined that maps a programmers to eliminate duplicate names for employees that
social security number to an employee number. are also programmers

Supertype Person

Functions on Person:

Alias Name Pname

I Pname Projects

......... .--.--..--

I I

I I

I ------mm - _______ 1

Progdb

SsnToEno
Converston function

I-------- ----- ,,-I

Empdb

An integrated view of two databases.

pie sort of domain mismatch. involving mm to several spheres. yet each sphere other kind of mismatch arises if con-
computational conversions among lit- might have a different notion about spe-
era1 data values. More complex discrcp-

cepts are represented in one sphere as
cific jobs. One sphere might have engi-

ancies arise when the same concept is
literal values but as persistent objects in

neer. aecrctary. and salesperson as jobs. another.
pcrceivcd as being populated. or parti- while the jobs in another might include
tioncd. in different ways.

In a typical domain mismatch prob-
technician. designer. engineer. secre- lem. information maintained in differ-

The concept of “job” might be com- tar!. and customer reprcscntativc. An- ent spheres must be presented in some

12 COMPlJTER

globally unified form in an integrating
sphere. For example, corporate head-
quarters (the integrating sphere) may
wish to see the starting salaries for all
jobs. Different divisions (the local
spheres) may have different definitions
of jobs, different algorithms for defin-
ing starting salaries. and different cur-
rencies in which they are expressed.

An ideal domain mapping is an in-
vertible computation on a stable popu-
lation of literal data values, such as unit
conversion. But the populations may
not be stable, requiring the mapping to
be updated: for example, adoption of
new letter grades at one school might
require updating the mapping between
other schools. Also, the mapping may
not be invertible. perhaps being many-
to-one.

The easiest solution puts the burden
on users, requiring them to maintain
the domains and mappings by appropri-
ately creating and deleting objects and
modifying mapping rules or data (see
the sidebar). In this case. a mapping
simply returns an error when it encoun-
ters an unfamiliar value. Suppose, for
example, the Grade function for type
Student1 and the Points function for
type Student2 do not behave consis-
tently.The typesStudent andStudent
might have different underlying data-
bases. The user can define functions
Map1 and Map2, which convert each to
a common result:

Create Supertype Student of
Student 1, Student2;

Create Function Score(Student x) -:
Real r AS

IF Student l(x) THEN
Mapl(Grade(x))

ELSE IF Student2(x) THEN
Map2(Points (x))

ELSE ERROR;

Schema mismatch. Schema mismatch
occurs when the data elements of one
database correspond to the schema ele-
ments of another database (that is. sim-
ilar concepts are expressed differently
in the schema). Depending on the mod-
el, these schema elements can be rela-
tions and attributes, entities and rela-
tionships, classes and methods, types
and functions, etc. Our work is expressed
in terms of the types and functions in
the Pegasus object model.

Many schema mismatch problems are
really domain mismatch problems, ex-
cept that they involve schema elements,

Table 1. The StockSphere, data values.

Company Reading Date Price

HP
HP
HP
HP
IBM
IBM

Close l/3/91 so
Close l/4/91 51
High l/3/91 52
High l/4/91 53
Close l/4/91 51
High l/4/91 54

Table 2. The StockSphere, data values.

Reading Date Price

Close l/3/91 50 I
Close
High
High

I /4/o I 51
l/3/91 52
l/4/91 53

rather than data elements. Jobs, for ex-
ample, are often modeled as types (that
is, subtypes of Employee). Instead of
Job(Sam) = ‘Engineer’, we know that
Sam is an engineer because he is an
instance of the type Engineer. For in-
stance, consider a sphere, StockSphere,,
containing a stock market function called
Activity with three arguments:

Activity (Char Company, Char
Reading. Char Date) -> Real
Price:

whose current extension is shown in
Table I.

Another sphere, StockSphere,. might
maintain the same data in separate func-
tions for each company. For instance.
for HP company. there is a function:

HP (Char Reading, Char Date) ->
Real Price.

For IBM. there is another function:

IBM (Char Reading, Char Date) ->
Real Price.

Table 2 shows the corresponding exten- A single logical object can have dif-
sion of the function HP. ferent identifiers in different data

In StockSphere,, the domain of inter- sources. The same object sometimes
est is a set of instances of company as exists in multiple data sources. A given

data values. In StockSphere, on the oth-
er hand, the corresponding domain of
interest is a set of functions.

To demonstrate the capability of Pe-
gasus for reconciling the structural dif-
ferences in schema of different spheres,
we can define a function StockPrice that
returns stock prices given a company,
reading, and date.

Create function StockPrice(Char
Company, Char Reading, Char
Date) -> Real Price AS

Select Price
For Each Real Price, Char

Company, Char Reading,
Char Date

Where Activity (Company,
Reading, Date) = Price

Union
Select Price
For Each Function f, Real

Price, Char Company, Char
Reading, Char Date

Where FunctionName (f) =
Company and f (Reading,
Date) = Price;

In the above example, FunctionName is
a system-defined function that returns
the name of a function andfis a variable
that ranges over all functions defined in
the system. The result of the second
select statement is to dynamically bind
to fall functions whose names match
the parameter Company. In the first
select statement, this parameter is used
simply as a data value. Clearly, we can
define a function AverageStockPrice. if
prices are returned from both spheres
and the two prices are averaged.

Object identification. Object identi-
fication in single database systems is
relatively simple. Most conventional
object-oriented DBMSs have developed
and adopted workable approaches.
However. object identification in a het-
erogeneousmultidatabasemanagement
system is difficult because logically dif-
ferent objects can have the same identi-
fier in different data sources. The usual
solution to the collision of object iden-
tifiers across multiple data sources is to
introduce an independent system of glo-
bally unique identifiers that have to be
mapped to the local identifiers of each
participating local database.

December 1991 23

...........l*...*.... *...*.*“..........~............~... * ..i

IntfMgent ;
i “- 2 SQL information i
” ,“~.cf”~. s Eimeee i II ..;* A *.... .: ,... ..A*..... A 1 .

Figure 2. Functional layers of Pegasus.

student might be attending several
schools, or the same person might exist
in separate databases as a student and
as a teacher. They can be expected to
have different object identifiers in the
different databases. There is, in gener-
al, no fully automatic way to deal with
this. Therefore, Pegasus allows the user
to specify equivalences.

The specification of equivalences
might be an algorithm that matches so-
c ial security numbers or a user-construct-
ed table of corresponding object identi-
fiers. Pegasus will attempt to treat
equivalent object identifiersassynonyms
for the same object.

24

Certain local data sources do not
provide unique object identification.
These sources can be handled either
by modeling everything as literals or
by introducing user-specified object
identifiers. In the latter case, object
identifiers are constructed from user-
imposed types and key properties, such
as student type and student number.
This requires handling of heteroge-
neous identifiers with different formats
and lengths.

These problems are being investi-
gated in the Pegasus project. Providing
an independent system of globally
unique identifiers will s implify the so-

lution. The correctness criteria used in
evaluating various solutions are

l Uniqueness. Objects must be distin-
guishable from one another in local or
global context.

l Stability. Objects must retain their
identities despite changes in properties.

l Consistency. Object identifiers must
not conflict with one another if the sys -
tem supports several k inds, such as log-
ical, local, and global object identifiers.

Pegasus architec ture

Figure 2 shows the Pegasus function-
al layers:

l The intelligent in,formation access
layer provides such services as informa-
tion mining, browsers, schema explora-
tion, and natural language interfaces.

9 The cooperative information rnan-
agement layer deals with schema inte-
gration, global query processing, local
query translation, and transaction man-
agement.

l The local data access layer manages
schema mapping, local query and com-
mand translation, network communica-
tions, local system invocation, and data
conversion and routing.

The cooperative information manage-
ment layer is responsible for processing
HOSQL statements and coordinating
multidatabase transactions. It supports
the global object model and manages
integrated schema and mapping infor-
mation.

Executive.The executive manages the
interaction between Pegasus and its
c lients. HOSQL queries are passed to
the query decomposer module in a ca-
nonical form that represents the parse
tree of HOSQL functional expressions.
The nodes of the parse tree include
function calls, types, variables, and lit-
erals.

The tree is decomposed into a set of
subqueries with an execution plan. The
execution plan is annotated with the
catalog information retrieved from the
Pegasus storage services. The execu-
tion plan can be v iewed as a tree consist-
ing of operational primitives and oper-
ands.

Examples of operational primitives
are commands to perform global joins,
to pass parameters (data) between

COMPUTER

DBMSs, and to synchronize steps exe-
cuted in parallel. The operand nodes
refer to the data in the native database
or to a subquery against a local data
source.

Optimizer.The optimizer module pro-
duces a more efficient alternative plan
that is equivalent to the original plan.
Several strategies are used by the opti-
mizer. Executing a single DBMS query
bypasses the optimization process and
goes directly to the destination data
source. The optimizer tries to reduce
the invocations of local DBMSs by
grouping together the subqueries that
refer to the same DBMS in an execution
plan. The grouping merges several sub-
queries into a single query by possibly
adding more restriction clauses to the
merged query. Another strategy is to
reduce the size of intermediate data
retrieved from a DBMS. Based on sta-
tistics and heuristics on the selectivity
of queries and volume of data in various
DBMSs, a cost-based optimization is
used to determine join order, join meth-
od, intermediate data routing, buffer-
ing, etc.

Unlike distributed DBMSs, Pegasus
has limited access to the statistical in-
formation about local DBMSs. More-
over, Pegasus has no control over opti-
mizing subqueries sent to each DBMS.
For example, Pegasus cannot enforce a
particular access path to be used at a
database site. Otherwise, it will violate
site autonomy. Therefore, Pegasus em-
phasizes global optimization and tries
to find the best possible decomposition
and grouping of queries.

Local translator. After the query ex-
ecution plan is determined, a subquery
in the plan may be submitted to a built-
in local translator depending on the type
of a local system. A local translator uses
the mapping information between a lo-
cal schema and an equivalent imported
schema to translate a Pegasus subquery
into the language of the local database
(for example, SQL for a relational
DBMS).

Pegasus internally supports the local
translators for important systems such
as relational databases. Other transla-
tors can be provided outside coopera-
tive information management in the lo-
cal data access layer. In this case, the
details of binding a function (or a que-
ry) to the commands of the underlying
server can be provided externally.

Global interpreter. The executive
passes the final plan to the global inter-
preter for execution. The global inter-
preter dispatches and synchronizes in-
ternal and external executables, such as
the Pegasus schema manager and ob-
ject manager and local interpreters. The

The global interpreter dispatches the
transaction manager, which provides

global interpreter also implements its

transaction-oriented facilities. As vari-
ous heterogeneous servers begin to in-

own primitive database operations such

teroperate in a cooperative environment,
the need for managing transactions that

as join, union, filter, and move. These

preserve some degree of isolation and
maintain global data consistency among

operations apply to the data retrieved

different systems becomes important.

from the other executables.

The main source of difficulty in ap-
plying traditional transaction manage-
ment techniques in these environments
is the local autonomy of the local sys-
tems that participate in the transactions.
In conventional distributed DBMSs, the
execution coordinator communicates
with the local databases to enforce data
integrity through the well-known two-
phase locking and two-phase commit
protocol. This is possible because all the
local databases that participate in the
transaction observe the same transac-
tion protocols.

In a heterogeneous environment, not
all participants will have the same trans-
action protocol. Therefore. Pegasus is
exploring new transaction management
techniques, which can provide more flex-
ibility.

Schema and object managers. The
schema and object managers implement
datadefinition operationscatalogman-
agement, object management, and sche-
ma integration services. All informa-
tion about the mapping of schemas
defined in a local system to an equiva-
lent imported schema is kept in the cat-
alog to be used for query processing and
transaction management. The object
manager, among other things, imple-
ments the data-definition operations of
the model and maintains the user-de-
fined mappings between the various
object identifiersin different object-ori-
ented DBMSs. The mapping informa-
tion can be used to detect object equiv-
alences in different local databases.

Local translator/mapper. Interface to

local systems is implemented via local
translator/mapper modules and Pega-
sus agents. A local translator/mapper
module implements translation and
mapping services not provided in coop-
erative information management. These

During idle times, these modules can

modules can also provide additional

collect statistical data and communi-
cate the results to the central site. They

semantics that are not provided in a

can also play a role in assisting global
transaction management by providing

local system. For instance, they can im-

missingfunctionalitiessuch as two-phase
commit or undo that might not be avail-

plement data exchange algorithms that

able in the local system.

are typically needed in a heterogeneous
data environment.

Pegasus agents. A Pegasus agent is a
process that runs in the same machine
as a local DBMS. Its role is to represent
Pegasus in the local site. The module is
normally linked with the local system
like one of its applications. It receives
the translated commands from Pegasus,
sends it to the local system, collects the
results, and sends them back to Pega-
sus.

A Pegasus agent should match its
buffer management policies with Pega-
sus to reduce communication and buff-
er management overhead. As a partici-
pant in a global query, a Pegasus agent
may have to keep track of several active
queries in its corresponding local DBMS.
For instance, a Pegasus agent associat-
ed with a relational database may open
multiple scans over tables accessed as
part of a global query.

W e believe that flexible, effi-
cient, and general-purpose
heterogeneous multidata-

bases are needed to support the trend
toward the extensive use of computers
and information as competitive tools in
today’s complex business world. How-
ever, designing and implementing such
systems is a major undertaking.

Several problems must be solved be-
fore robust general-purpose heteroge-
neous multidatabase management sys-
tems become possible. The problems
that must be resolved include distin-
guishing equal but logically different
objects, consolidating different repre-
sentations of the same object, material-
izing the views of existing applications,

December 1991 25

resolving the semantic and schematic
heterogeneity of information stored in
multiple databases, maintaining consis-
tency of data in the presence of multi-
database concurrent transactions, and
doing all this efficiently.

The near-term plans of the Pegasus
multidatabase management system in-
clude facilities for updating the local
databases through Pegasus, providing
flexible transaction management and
concurrency control, defining relation-
ships across local databases, and resolv-
ing domain mismatches by providing
conversion functions. W

References

1. W. Litwin, L. Mark, and N. Roussopou-
los, “Interoperability of Multiple Auton-
omous Databases,” ACM Computing
Surveys, Vol. 22, No. 3, Sept. 1990, pp.
267-293.

2. G. Thomas et al., “Heterogeneous Dis-
tributed Database Systems for Produc-
tion Use,“ACM ComputingSurveys, Vol.
22, No. 3, Sept. 1990, pp. 237-266.

3. Integration of Information Systems: Bridg-
ing Heterogeneous Databases, A, Gupta,
ed., IEEE Press, 1989.

4. C. Chung, “Dataplex: An Access to Het-
erogeneous Distributed Databases,”
Comm. ACM. Vol. 33. No. 1. Jan. 1990.
pp. 70-80 (with corrigendum in Comm.
ACM, Vol. 33, No. 4. p. 459).

5. C. Batini, M. Lenzerini, and S.B. Na-
vathe, “AComparative Analysisof Meth-
odologies for Database Schema Integra-
tion,” ACM Computing Surveys, Vol. 18,
No. 4, Dec. 1986, pp. 323-364.

6. Y. Breitbart, P.L. Olson and G.L. Thomp-
son, “Database Integration in a Distrib-
uted Heterogeneous Database System,”
Proc. Data Eng. Conf., IEEE CS Press,
Los Alamitos, Calif., 1986, pp. 301-310.

7. T.A. Landers and R.L. Rosenberg, “An
Overview of Multibase - A Heteroge-
neous Database System,” Distributed
Databases, H.-J. Schneider, ed., North-
Holland, Amsterdam, 1982, pp. 153-184.

8. U. Dayal and H.-Y. Hwang, “View Def-
inition and Generalization for Database
Integration in a Multidatabase System,”
IEEE Trans. Software Eng., Vol. SE-IO,
No. 6, Nov. 1984, pp. 628-645.

9. D.H. Fishman et al., “Iris: An Object-
Oriented Database Management Sys-
tem,” ACM Trans. Office Information

Systems, Vol. 5, No. 1, Jan. 1987, pp.
48-69.

10. R. Ahmed and A. Rafii, “Relational Sche-
ma Mapping and Query Translation in
Pegasus,” Proc. Workshop on Multidata-
basesandSemanticInteroperability, 1990,
pp. 22-2s.

11. A. Rafii et al., “Integration Strategies in
Pegasus Object Oriented Multidatabase
System,” Proc. Hawaiilnt’l Conf. System
Sciences, to be published 1992 by IEEE
CS Press, Los Alamitos, Calif.

12. W. Kent. “Solving Domain Mismatch and
Schema Mismatch Problems with an
Object-OrientedDatabaseProgramming
Language,” Proc. VLDB Conf., 1991,
Morgan Kaufmann, San Mateo, Calif.,
pp. 147-160.

Rafi Ahmed is a member of technical staff at
the Hewlett-Packard Laboratories, Palo Alto,
California. His research interests include fluid
mechanics, version management, temporal
and heterogeneous databases, query lan-
guages, and query optimization.

Ahmed received his MS degree in mathe-
matics from the University of Bihar, India,
and his MS and PhD degrees in computer
science from the University of Florida.

Philippe De Smedt has been a member of the
technical staff at the Hewlett-Packard Labo-
ratories, Palo Alto, California, since 198.5.
He is responsible for integrating multimedia
data sources on the Pegasus project. His
research interests lie in performance evalua-
tion, database technology, and multimedia
systems.

De Smedt received an MS in computer
science from the University of California at
Berkeley and an MS in business and technol-
ogy from Stanford University.

Weimin Dn is a member of the technical staff
at the Hewlett-Packard Laboratories, Palo
Alto, California, where heconductsresearch
into heterogeneous database systems. His
research interests also include software en-
gineering and programming languages.

Du received the BE and ME degrees in
computer engineering from Hefei Universi-
ty of Technology, China, and MS and PhD
degrees in computer science from Purdue
University.

WilliamKentresearchesobject-orienteddata
models in the Database Technology Depart-
ment at the Hewlett-Packard Laboratories,
Palo Alto, California. He played a leading
role in developing the Iris prototype object-
oriented database system and is active in the
Pegasus project, investigating interoperabil-
ity of heterogeneous database systems.

Kent authored the book Data and Reality
and numerous papers in data analysis and
design, conceptual schemas, entity-relation-
ship models, the relational data model, and
object orientation.

Mohammad A. Ketabchi is associate dean of
the School of Engineering of Santa Clara
University and an associate professorofcom-
puter engineering there. He is the founder
and director of the Santa Clara University
Object Technology Research Laboratory, and
has been a consultant to Hewlett-Packard
Laboratories, Palo Alto, California, since
1987. He has been active in the development,
evaluation, and application of object-orient-
ed systems since 1982.

Ketabchi obtained his PhD in computer
science from the University of Minnesota,
Minneapolis.

26 COMPUTER

Witold A. Litwin, a professor at the Univer-
sity Paris-Dauphine. is a visiting researcher
at the Hewlett-Packard Research Laborato-
ries, Palo Alto, California, and Santa Clara
University. His research interests are dis-
tributed databases, multidatabase systems,
interoperability,anddynamicdatastructures.

Litwin has written more than 150research
papers, edited five books, and lectured at
several universities.

Abbas Rafii is an engineer scientist in the
Hewlett-Packard Laboratories, Palo Alto,
California. He joined Hewlett-Packard in
1979 and has worked on several projects on
computer system performance measurement
and modeling, operating systems, and ob-
ject-oriented databases. He was the techni-
cal leader of the Pegasus prototype team.

Rafii received his BS degree from the
University of Tehran, and his MS and PhD
degrees in electrical and computerengincer-
ing, respectively. from Stanford University.

Ming-Chien Shan manages the Pegasus
project and Perseus project at the Hewlett-
Packard Laboratories, Palo Alto, Califor-
nia. He has been with Hewlett-Packard since
1985 and was one of the original members of
the Iris object-oriented DBMS team.

Ming-Chien received an MS degree in
mathematics from Rutgers University and a
PhD degree in computer science from Uni-
versity of California, Berkeley.

Readers can contact the authors at the Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto. CA 94303-0971

I 41

1cARcv ‘92
INTERNATIONAL CONFERENCE ON AUTOMATION. ROBOTICS AND COMPUTER VISION

15 - 18 September 1992, Singapore

TheSecond IntemationalConferenceon Automation, RoboticsandComputer Vision will be heldin Singaporeon 15- IBSeptember 1992.
The conference is jointly organised by the School of Electrical and Electronic Engineering, Nanyang Technological University and the
Institution of Engineers (Singapore), co-sponsored by the Institution of Electrical Engineers (IEE). UK and the Institute of Measurement
and Control (InstMC). UK, and in cooperation with the IEEE Computer Society, IEEE Robotics and Automation Society (solicited). the
IEEE Singapore Section, the Instrumentation and Control Society (ICS). Singapore Section and other local professional organisations.

The theme will focuson”AGlimpseoftheZlstCentur)rin thecontextofintelligent industrialautomation.There will beplenaryand tutorial
sessions. An exhibition will also be held in conjunction with the conference.

Keynote Addresses by : Professor Michael Brady, Professor Russell C Eberhart and Professor Lester Gerhardt

Tutorial Sessions :

A : State-of-the-Art in Computer Vision
By Professor Michael Brady

B : Technology and Integration in the 21st Century
By Professor Lester Gerhardt

C : Engineering a Solution with Neural Networks

D : Sensor-Based Intelligent Robots
By Professor Mohan M Trivedi

E : Real-Time Software Engineering for Industrial Applications
By Professor Mike Rodd

By Professor Russell C Eberhart

II

Papers describing original work in, but not limited to, the following research areas are invited:

* Robotics * Intelligent Automation l Computer Vision + Neural Networks
l Al 8 Expert Systems * Control Applications l Real-Time Systems * Process Automation

Authors are invited to submit four copies of an extended summary of 300-500 words to:
ICARCV ‘92 Conference Secretariat Author’s Schedule :
Associated Conventions & Exhibitions Pte Ltd 30 April 1992 Extended Summary
204 Bukit Timah Road, #04-00 31 May 1992 Notitication of Acceptance
Boon Liew Building, Singapore 0922 30June1992 Receipt of Final Manuscript
Tel : (65) 799 5470,799 5399 Fax : (65) 791 2687
Telex : NTU RS 38851 E-mail : EMITAL@NTUVAX.BITNET

All accepted papers for presentation at the conference will be reviewed for possible publication in the Nanyang Technological University’s
EEE Journal, Special Edition on Automation, Robotics and Computer Vision. II

