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Semantic Conflict Resolution Ontology (SCROL): An Ontology for Detecting 
and Resolving Data- and Schema-Level Semantic Conflicts 

Abstract 

Establishing semantic interoperability among heterogeneous information sources has been a critical 

issue in the database community for the past two decades.  Despite the critical importance, current 

approaches to semantic interoperability of heterogeneous databases have not been sufficiently 

effective.  The federated schema approach has been criticized for its lack of semantic richness and 

flexibility.  The domain ontology approach addresses the problem of semantic richness but lacks 

domain generality.  We propose a formal structure of a common ontology called Semantic Conflict 

Resolution Ontology (SCROL) that addresses the inherent difficulties in the conventional 

approaches: lack of semantic richness and limited domain generality.  SCROL provides a 

systematic method for automatically detecting and resolving various semantic conflicts in 

heterogeneous databases.  SCROL is formally defined to provide a dynamic mechanism of 

comparing and manipulating contextual knowledge of each information source, which is useful in 

semantic interoperability among heterogeneous databases.  We show how SCROL is used for 

detecting semantic conflicts between semantically equivalent data elements. Using illustrative 

examples, we also demonstrate how the contextual knowledge captured in SCROL is used to detect 

and resolve semantic conflicts. In addition, we present evaluation results to show that SCROL can 

be successfully used to automate the process of identifying and resolving semantic conflicts.  

SCROL can also be used to provide interoperability for e-business systems, such as B2B systems. 
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1 Introduction 

The concept of ontology, which originates from philosophy, has been widely employed by several 

research communities.  In the artificial intelligence (AI) community, ontologies have been used to 

capture domain knowledge for knowledge-based systems.  The knowledge is typically represented 

in the knowledge-based system’s representation language using the vocabulary provided by an 

ontology.  In the distributed artificial intelligence (DAI) community, which includes research on 

distributed problem solving (DPS) and multi-agent systems (MAS), ontologies have been accepted 

as an effective means to facilitate collaboration and communication among agents [39].  The need 

for ontologies has also been addressed in the information retrieval area to facilitate semantic 

information searching.  Other areas, such as natural language processing (NLP), utilize ontologies 

to facilitate natural language generation and interpretation [21].  The database community is not an 

exception.  In particular, research on distributed, heterogeneous databases has begun to exploit 

ontologies in order to support semantic interoperability. 

In this paper, we present a formally defined ontology called SCROL (Semantic Conflict 

Resolution Ontology) that can be used to identify and resolve semantic conflicts among 

heterogeneous databases.  Consider a county tax administrator Mary Beth, who is interested in 

understanding how property tax assessments are different across various counties within her 

jurisdiction.  To answer this question, she may have to access many individual county databases 

simultaneously.  However a major impediment is that, taxes are captured in different ways in each 

database.  The Pima county database stores yearly tax amounts for each property, while Pinal 

county stores tax rates as a percentage of property value.  Maricopa county, on the other hand, 

stores the monthly amount owed on each property.  To be able to properly compare property taxes, 

Mary Beth has to understand these differences and also know how to resolve them before she can 

attempt to compare the taxes.  Similarly, there are a host of other semantic differences which need 
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to be properly identified and resolved before databases can be used effectively.  SCROL is intended 

to tackle this problem of recognizing and resolving semantic conflicts among multiple databases.  

Our major objective is to provide a robust mechanism for automating (to the extent possible) the 

semantic conflict identification and resolution process.  SCROL has a simple structure yet results of 

our evaluation show that it is powerful enough to tackle a large variety of different semantic 

conflicts.  

Semantic interoperability can be defined as the ability of participating system domains to 

understand the meaning and use of terminology from different domains and the axiomatic mapping 

ability between agreed concepts to make a semantically compatible information environment [31]. 

Establishing semantic interoperability among heterogeneous and disparate information sources has 

been a critical issue meriting active research within the database community for the past two 

decades [35].  Kashyap and Seth identified two essential issues for achieving semantic 

interoperability in a multidatabase environment [16].  The first issue concerns the identification of 

semantically related data in different database systems and the subsequent resolution of the 

schematic differences among the semantically related data.  A key aspect of identifying 

semantically similar data in different databases involves making semantics explicit [5].  Semantic 

similarity depends on the context in which a data object is used, and the contextual representation of 

a data object concerns how the data object is used [15].  Therefore, context is a critical element for 

capturing and representing similarities of data objects.  Several techniques allow us to determine 

semantically similar objects.  These include semantic modeling approaches, formal logic-based 

approaches, classifications of terminology, formal languages, knowledge-based systems, and the 

use of a shared ontology [35]. 

The second important issue relates to the access and use of a large number of autonomous 

databases without prior knowledge of their information content.  In general, users are required to be 
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familiar with the content and structure of the information sources in order to be able to obtain an 

answer for a particular query.  To reduce the burden of acquiring such familiarity, one promising 

approach is based on graphical manipulation of database schema diagrams (or conceptual schema 

interfaces) [4].  This approach provides a uniform method for query translation and heterogeneity 

resolution in a multidatabase environment.  Another approach is to explicitly capture the semantic 

content of the individual databases.  It is, therefore, very important to understand the semantics of 

each schema component and to capture and reason by using the semantics [16]. 

Although semantic data models are commonly used in database design to capture the 

semantics of the database, the meta-information (i.e., tacit knowledge) captured during the design 

phase is not explicitly represented in the resulting database; hence, such information cannot be 

completely accessible to applications, queries, or users [41].  Therefore, a semantic data model that 

captures domain meta-information (i.e., entity classes, relationships, constraints, cardinalities, etc.) 

alone is not enough to support semantic interoperability among heterogeneous databases.  While the 

different conceptual database schemas designed in a semantic data model provide the logical 

descriptions and relationships of the information within the databases, an ontology provides the 

concepts that represent the domain knowledge [6].  Basically, an ontology is a specification of the 

conceptualization of the target world [12] and hence provides a common vocabulary to describe the 

target world, which is one of its most important roles.  In this respect, an ontology can be defined as 

a taxonomy of concepts, which includes relationships and constraints among concepts in order to 

eliminate unexpected or undesired interpretation.  Each term (i.e., each concept) in an ontology has 

a unique meaning determined (and constrained) by richer relationships with other terms.  The 

relationships among given terms in an ontology are extremely important because it is the 

relationships that express the knowledge specific to the application domain.  In practice, it is often 
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very difficult to distinguish between “ontologies” and “knowledge” because there is no clear 

boundary between them as we observe in Cyc, the knowledge base described by Lenat [17]. 

The problem of semantic interoperability has generally been tackled by one of two 

approaches: the federated schema approach or the domain ontology approach.  The federated 

schema approach attempts to construct a federated (or global) schema and establish mappings 

between the federated schema and the participating local schemas.  However, the drawback of this 

approach is its lack of semantic richness and flexibility [32].  The other approach – the domain 

ontology approach – strives to solve the problem of lack of semantic richness by capturing the tacit 

knowledge within a certain domain in great detail in order to provide a rich conceptualization of 

data objects and their relationships.  Even though such an approach may be theoretically valid, the 

application of the ontology approach in practice is practically infeasible due to the inherent 

complexities of the knowledge domain.  Hence, the domain ontology approach is typically applied 

only to a restricted application domain, which limits its general applicability.  Furthermore, in order 

to represent complex conceptualizations, the formalism used in representing the ontology also often 

becomes too complicated for wide application. 

Our hybrid approach is based on the use of a common ontology, which specifies a vocabulary 

to describe and interpret shared information among its users.  Our approach is similar to the 

federated schema approach in the sense that there is a high-level domain model playing a role of 

shared schema while ensuring the autonomy of the local schemas.  However, a domain model is 

different from the conventional federated schema because domain knowledge captured in the 

domain model is generally represented in a logic language using the vocabulary provided by an 

ontology.  An ontology-based domain model captures much richer semantics and covers a much 

broader range of knowledge within a target domain.  Our approach is also similar to the 

conventional ontology approach in that an ontology-based domain model is constructed and used to 
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describe the domain knowledge; however, it is different from the conventional approach in that we 

provide a simple formalism to capture only the domain knowledge pertaining to potential semantic 

conflicts.  One advantage of this simplified ontology is that it is not domain-specific.  Our approach 

does not lose any semantic richness since it also provides a semantic model that captures the 

intensional description of the application domain.  A promising approach to semantic 

interoperability is thus to adopt a common ontology as a basis for mutual understanding, in addition 

to the use of a semantic data model [14].  Hence, we argue that using both a common ontology and 

a semantic data model will provide a more complete understanding of the application domain. 

Our paper is organized as follows.  Section 2 explains the rationale behind and justification 

for using a common ontology approach.  In Section 3, our common ontology, called Semantic 

Conflict Resolution Ontology (SCROL), is formally defined.  Section 4 presents the 

implementation of SCROL based on the classification scheme of semantic conflicts that provide the 

foundation for constructing SCROL.  We also describe the ontology mapping and relationship 

knowledge, which are derived from the formal structure of SCROL.  Section 5 presents examples 

demonstrating the use of SCROL.  In addition, empirical results are discussed to evaluate the 

usefulness of SCROL.  In Section 6, our approach is compared with previous approaches and our 

contributions are summarized.  Finally, our future research directions are addressed in Section 7. 

2 Need for a Common Ontology to Facilitate Semantic Interoperability 

In this section, we first examine the concept of “ontology,” a term commonly used in the fields of 

AI and knowledge management (KM).  We then argue that the design of a common ontology is 

needed to facilitate interoperability in multiple heterogeneous systems.  The (common) ontology is 

defined by various researchers as: 

• The specification of a representational vocabulary for a shared domain of discourse, which 

may include definitions of classes, relations, functions, and other objects [12]. 



 6

• A concept system in which all concepts are defined.  Concepts are interpreted in a 

declarative way, as standing for the sets of their instances.  This concept system is limitative 

in the sense that concepts can only be used if they are defined in the ontology.  Definitions 

of concepts are formal where possible and informal otherwise [40]. 

• A model of some portion of the world, which is described by defining a set of 

representational terms [20]. 

• A means of achieving consistent communication between agents in multi-agent systems [28]. 

• A collection of concepts and interconnections to describe information units [14]. 

We use the term common ontology as a vocabulary of representational terms (concepts) with 

agreed-upon definitions in the form of human readable text and machine-enforceable, declarative 

constraints (agent readable format) on their well-formed use [10]. 

Semantic interoperability requires resolving various context-dependent incompatibilities, i.e., 

semantic conflicts [23].  The context refers to the knowledge that is required to reason about another 

system for the purpose of answering a specific query [24].  Therefore, it is important to provide 

contextual knowledge of domain applications in order to ensure semantic interoperability.  Siegel et 

al. [37] argue that the most basic requirement of the use of context for heterogeneous databases is 

the existence of common metadata vocabularies, so that any system in the enterprise can use such a 

common vocabulary to develop rules, i.e., context knowledge describing data semantics.  In this 

approach, terminology outside of this common vocabulary must be translated to the common 

vocabulary, otherwise the comparison of data semantics will not be possible [37].  Therefore, we 

believe that this approach is more practical than trying to agree upon broad-based standards for 

databases.  Moreover, it is important to have automatic ways of comparing and manipulating the 

common vocabulary in order for a context knowledge representation to be useful for semantic 

interoperability among heterogeneous databases [16]. 
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Consequently, in our framework, the common vocabulary that represents context knowledge 

is captured in the form of a common ontology, called Semantic Conflict Resolution OntoLogy 

(SCROL), which provides a systematic way of automatically detecting and dynamically resolving 

various semantic conflicts found in heterogeneous databases.  In addition, all schema components 

captured by a common semantic data model, called USM* [29], are mapped to SCROL.  The use of 

SCROL, in which all data objects have been mapped, has several advantages: 

• It facilitates sharing and reuse [40]. 

• Mappings can be associated with each database and application, and can be applied by 

mediators [13]. 

• An administrator constructing or maintaining mappings needs to consider only his or her 

own data objects, not those in any other database or application program [13]. 

Thus, a common ontology-based manipulation of complex and heterogeneous databases is 

one of the most desirable solutions for achieving semantic interoperability.  There are, however, 

four important issues that need to be addressed.  In working with a common ontology, Kahng and 

McLeod [14] discusses four of these: 

• Contents: The contents of the common ontology are heavily affected by the semantic 

conflict types to be resolved. 

• Construction and Maintenance: The initial construction of a common ontology prior to any 

information sharing is a challenging problem.  Further, it is very important to allow the 

evolution of the common ontology. 

• Mapping: Mapping from an information source to the common ontology is typically the 

most labor-intensive and time-consuming process and is mostly carried out by domain 

experts. 

• Relevance: The similarities and differences between two data objects from different 

databases or the relevance of exported information to a given request needs to be determined 

at some point within the information sharing activities. 
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The first and second issues can be resolved by establishing agreements on the meaning of the 

terms used in a common ontology, i.e., ontological commitment [12].  In order to make the contents 

of the common ontology as general as possible, and thus usable in various environments, we use a 

comprehensive classification framework of semantic conflicts [30], which gives clear guidelines for 

capturing semantic conflicts in various heterogeneous databases using a well defined set of 

relationships between concepts to characterize application domains.  The classification framework 

has been encoded into the common ontology, SCROL, and is describe in more detail in Section 4.1.  

After its initial construction, we allow evolution of the common ontology.  Since semantic conflict 

taxonomy is possibly an approximation based on an agreement among participants, a system 

designed to solve the semantic conflicts is necessarily incremental and iterative [23].  Therefore, our 

approach (i.e., initial comprehensive construction and then the adoption of incremental and iterative 

evolution of the common ontology) is preferred because it allows the system to fine-tune and 

accommodate more contents as the system grows, while at the same time allowing the participating 

systems that may have evolving schemas to remain autonomous. 

After the agreement has been reached, the next step (the third issue) is to establish mappings 

between information sources and the common ontology.  Although the establishment of a 

comprehensive taxonomy and the mapping process may be difficult and time-consuming, being 

sharable and reusable by multiple heterogeneous environments probably justifies the extra effort in 

the design.  The mapping is encoded in terms of the ontology mapping knowledge, described in 

Section 4.3.  We approach the fourth issue by defining a formal structure of SCROL (Section 3) that 

allows the designer to describe how concepts are related to each other by specifying relationships 

between them in terms of the ontology relationship knowledge (Section 4.3).  It provides initial 

linguistic links between concepts.  In addition, the formal definitions of relationships in SCROL 
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clearly lead to a single semantic interpretation of a given concept via semantic transformation 

between different contexts (Section 4.2).  Detailed descriptions are illustrated in later sections. 

3 SCROL Constructs and Definitions 

Gruber [11] maintains that formal ontologies are viewed as designed artifacts, formulated for 

specific purposes and evaluated against object design criteria.  He suggests five design criteria for 

ontologies whose purpose is knowledge sharing and interoperability among applications based on a 

shared conceptualization: (1) clarity (i.e., objective definitions), (2) coherence (i.e., logically 

consistent definitions), (3) extensibility (i.e., ability to define new terms based on the existing 

vocabulary without revisions of the existing definitions), (4) minimal encoding bias (i.e., 

specification of the conceptualization at the knowledge level without depending on a particular 

symbol-level encoding), and (5) minimal ontological commitment (i.e., specifying the weakest 

theory and defining minimal terms that are essential to the communication of knowledge consistent 

with that theory).  Ouksel, however, argues that it is not practically nor theoretically possible to 

develop and maintain an ontology that strictly adheres to these design criteria in an environment of 

autonomous, dynamic, and heterogeneous databases [23].  We believe that most currently existing 

ontologies have been developed mainly for the purpose of representing domain specific or 

commonsense knowledge, and they do not identify nor accurately classify semantic conflicts [23].  

However, SCROL directly addresses this issue. 

We formalized SCROL such that it can provide a systematic method for automatically 

detecting and assisting in resolving various semantic conflicts in heterogeneous databases.  Unlike 

other traditional ontology frameworks designed to capture domain specific [19, 20, 40] or 

commonsense knowledge [3, 18, 38], SCROL is developed to encode extensible knowledge on 

commonly found semantic conflicts that have been identified in our classification framework.  It 

then provides an automatic way of comparing and manipulating contextual knowledge of each 
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information source, which is used for semantic transformation across heterogeneous databases.  

Before we describe how SCROL can be structured to support semantic interoperability among 

heterogeneous databases, we first introduce and formally define the basic constructs of SCROL. 

The structure of SCROL is a tree.  A tree is a partially ordered set in which the predecessors 

(e.g., superconcepts) of each element are well-ordered; i.e., if T = {s | s < t}, where s, t ∈ T and s is 

a predecessor of t, then each T is well-ordered [34].  Therefore, a tree can be used as a theoretical 

model of hierarchies or sets over which a “parenthood” relation (also called a “vertical” relation in 

our framework) is defined.  We slightly extend and modify the basic definition of a tree to define 

so-called “horizontal” relations (i.e., “sibling” relations and “domain value mapping” relations, 

which are discussed later).  Note that the formal model of SCROL does not seek to describe a single 

object but a whole class of objects and to define its formal structure, that is, to achieve logical 

organization. 

Definition 1. A Semantic Conflict Resolution Ontology (SCROL) is a tuple Λ = (OC, OI, 

RS, RM, u), where OC, OI, RP, RS, RM, and u are as defined below.  Its structure is graphically 

illustrated in Fig. 1, and the graphical notation of each SCROL construct is illustrated in Fig. 2. 

Definitions 2. OC is a distinct set of concepts.  The oval shapes depicted in Fig. 1 represent 

concepts.  Each element of OC is called a node of Λ.  Concepts are represented as terms.  A concept 

is related to instances in that a concept is a generalized abstract term that may have several concrete 

instances.  For example, the term Temperature is a concept and Fahrenheit and Celsius are instances 

of Temperature.  Fahrenheit and Celsius are two different specific expressions of Temperature.  A 

concept may have zero or more children, and each child may be another concept or an instance.  A 

concept may have exactly one parent concept.  A concept that does not have any child concept is a 

leaf concept, i.e., a leaf concept may have one or more instances as children, but cannot have any 

concept as its child.  Concepts have properties.  Such properties are defined as follows: 
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is a term that represents a concept. 

tion is an agreed upon description of a concept written in plain, human-readable text. 

ncept is a property that is present in all concepts.  This property contains a list of 

cepts (children) belonging to the concept.  All leaf concepts have null values in this 

ty because they do not have any subconcepts (but may have instances as stated above). 

ncept-of  is a mandatory property of all concepts except the root.  It contains its parent 

t (called “superconcept”).  A concept is allowed to have at most one parent concept. 

ce is a property for only leaf concepts that have instances as their children.  This 

ty contains a list of instances belonging to the concept. 

nced-by is a property that is present only in leaf concepts.  It is used to store mapping 

ation about the underlying schema components (i.e., entity classes, relationships, and 

tes) that are mapped to the concepts`.  This property is expressed as an ordered tuple 
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< s, o, t, l > where s is a referring schema, o is a referring object id (oid), t is an object type 

(i.e., entity class, relationship, or attribute), and l is a level of reference (i.e., by-type or by-

value).  The by-type means the object is referenced by its type and domain, while by-value 

refers to the data value itself.  The default value of l is by-type. 

Definitions 3. OI in Λ is a distinct set of instances.  The rectangles depicted in Fig. 1 

represent instances.  Each element of OI is also called a node of Λ.  Instances are also represented 

as terms.  Every instance has exactly one concept as its parent.  Instances do not have children.  

Instances have properties.  Such properties are defined as follows: 

• Name is a term that represents an instance. 

• Definition is an agreed upon description of an instance written in plain, human-readable text. 

• Instance-of  is a mandatory property of all instances.  It contains its parent concept.  An 

instance has exactly one parent concept. 

• Referenced-by is a property that is present in every instance.  It is used to store mapping 

information about the underlying schema components (i.e., entity classes, relationships, and 

attributes) that are mapped to the concepts or instances.  This property is expressed as an 

ordered tuple < s, o, t, l > where s is a referring schema, o is a referring object id (oid), t is 

an object type (i.e., entity class, relationship, or attribute), and l is a level of reference which 

is only by-type. 

Definition 4. RS refers to a sibling relationship and is a relation on OC.  RS can occur only 

between two concepts, but not between two instances.  RS consists of a disjoint relationship, a peer 

relationship, a part-of relationship, and an is-a relationship and has the following form: <x, y, F>, 

where x, y ∈ OC and F = {disjoint, peer, is-a, part-of}.  Note that disjoint and peer are symmetric 

but is-a and part-of are asymmetric.  They are all transitive.  The dotted vertical lines between 

concepts depicted in Fig. 1 represent sibling relationships with proper labels indicating either 

disjoint, peer, part-of, or is-a relationships. 

• The disjoint relationship between two concepts indicates that they are not semantically 



 

equivalent.  For example, the concepts Distance and Temperature have a disjoint 

relationship because they are not semantically equivalent. 

• The peer relationship is used when two concepts are semantically equivalent, that is, two 

concepts represent the same real world object, thus it is possible for the given two concepts 

to define one-to-one mapping between all the instances of these two concepts.  Therefore, 

instances belonging to the two concepts can be transformed into each other through semantic 

transformation rules.  In this case, the domain value mapping relationships (defined in the 

next definition) between all instances of such concepts are always one-to-one.  For instance, 

as illustrated in Fig. 3, the subconcepts of a concept Localized Time have peer relationships.  

They are peers because in every instance they can have one-to-one semantic mappings; thus, 

they can be transformed into each other in a given context.  For instance, the transaction 

time of stock trades recorded in Seoul can be converted to the local time in Bombay. 

• The part-of relationship is similar to an “aggregation” in semantic data models and object-

oriented data models.  For example, the concept City is a part-of Urban Area which is a part-

of County.  The concept County is again a part-of a concept State/Providence and so forth. 

• The is-a relationship is the same as “generalization/specialization” in semantic data models 

and object-oriented data models.  For instance, the concept Water can have several 

specialized concepts, such as Ground Water and Surface Water. 

Note that we don’t have “overlapping” relationships because overlapping relationships can be 
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integrated and depicted through generalization, i.e., is-a relationship.  The disjoint and peer 

relationships are used by mediators to determine whether semantic conflicts exist (particularly data-

level conflicts) and, if semantic conflicts exist, whether they are resolvable.  The purpose of using 

part-of and is-a relationships is to allow mediators to detect schema-level conflicts between 

schemas. 

Definition 5. RM in Λ is a relation on OI and called a domain value mapping relationship (or, 

briefly, a mapping relationship).  The dotted vertical lines across parenthood relationships between 

instances depicted in Fig. 1 represent mapping relationships.  By definition, RM can occur only 

between instances, but not between concepts.  Another property of RM is that all instances 

belonging to a concept may be regarded as synonyms of their parent concept.  This is the case 

where instances have different names for the same concept.  Similarly, if two instances have the 

same name but belong to different concepts, they are homonyms.  Note that all mapping 

relationships described below are derived from functional mappings in set theory.  The mapping 

relationships are used by mediators to determine whether the actual data values that are mapped to 

instances can be transformed from one value to another and vice versa.  RM consists of one-one, 

one-many, many-many, or none.  In addition, total and partial mappings are used in combination of 

one, one-many, and many-many relationships to indicate whether every value in one instance has 

the corresponding value in other instances. The corresponding notation and description of each 

mapping relationship is presented in Table 1. 

Definition 6. u is the root of Λ.  The root u has no parent: there is no x ∈ OC such that RP(x, 

u).  By definition, there is exactly one u in Λ. 
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domains.  SCROL needs to be extended only if the database administrator discovers that there is a 

brand new type of a semantic conflict that was previously undefined in SCROL. 

In order to make the contents of SCROL as general as possible and to enable them to be 

widely reused by a broad range of different application domains, the concepts represented in 

SCROL are neither data or application-driven nor are they domain specific.  Since the main 

objective of our ontology is to facilitate detection and identification of various semantic and 

schematic conflicts, our ontology, unlike the Cyc project [18], is not intended to accumulate a 

massive knowledge base of human consensus knowledge.  This goal enables us to develop a very 

simple yet flexible ontology.  In fact, most currently existing ontologies cannot identify and 

accurately classify semantic conflicts [23].  Since the discovery and reconciliation of semantic 

conflicts necessitate the ability to classify these conflicts, we construct SCROL based on a 

comprehensive classification framework of semantic conflicts [30].  This classification framework 

is based on extensive field study and investigation of various real geographic datasets (i.e., US 

Geological Survey data, vegetation data, land use data, etc.) containing several millions of records.  

We have rigorously defined additional types of semantic conflicts that are regularly encountered in 

geographic databases. We also tested each type of semantic conflict using these datasets to examine 

the extent to which CREAM automates the semantic conflict resolution process (see Section 5.2).  

The classification framework characterizes semantic conflicts at two different levels, i.e., data and 

schema level conflicts, each having six types of semantic conflicts.  In most instances, data-level 

conflicts are differences in data domains caused by the multiple representations and interpretations 

of similar data.  Schema-level conflicts are, on the other hand, characterized by differences in 

logical structures and/or inconsistencies in metadata (i.e., schemas) of the same application domain.  

A more detailed description of the classification framework is found in [30].  Using the Ontology 

Designer, we defined SCROL to capture all the types of conflicts represented in Tables 2 and 3. 
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Table 2 
Data Level Conflicts 

Conflict Description 
Data value conflict Different interpretations of the “meaning” of data instance values 
Data representation 
conflict 

Similar objects are described by different data types or data format 
representations 

Data unit conflict Use of different measurement units 
Data precision conflict Implementation of different scales, different domain precision, or different data 

granularities and resolutions 
Known data value 
reliability conflicts 

Data present in different databases may be subject to data reliability 
(i.e.,measurement of error, measuring instruments, precision of 
measurements, topological properties, and treatment of time dimension) 

Spatial domain conflict Specifications of geographic regions or objects are “differently” but “legally” 
defined by different people 

 
Table 3 

Schema Level Conflicts 
Conflict Description 
Naming conflict Labels of schema elements (i.e., entity classes, relationships, and attributes) 

are somewhat arbitrarily assigned by different database designers 
(homonyms and synonyms) 

Entity identifier conflicts Assignment of different identifiers (primary keys) to the same concept in 
different databases 

Schema isomorphism 
conflicts 

Same concept (entity class) is described by a dissimilar set of attributes (i.e., 
the same concept is represented by a number of different attributes) or is not 
set operation compatible 

Generalization conflicts Different design choices for modeling related entity classes 
Aggregation conflicts When an aggregation is used in one database to identify a set of entities in 

another database 
Schematic discrepancies When the logical structure of a set of attributes and their values belonging to 

an entity class in one database are organized to form a different structure in 
another database 

 
 

The various data level and schema level conflicts are encoded as the first level children 

concepts within SCROL’s tree.  For example, Fig. 4 shows the various data level conflicts that are 

encoded within SCROL.  Due to space limitations, only the data unit conflict within the data level 

conflicts are expanded.  All other types of conflicts are also encoded as children concepts and 

instances of these concepts to represent the various semantic conflicts that may arise in the domain 

of the heterogeneous databases.  This common ontology is then mapped to the individual local 

schemas and also to the federated schema so that each type of semantic conflict may be detected as 

needed. 
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: Defining Conflict Controller, Original Context, and Target Context 

etect a certain semantic conflict, three pieces of information are needed from SCROL: a 

roller, an original context, and a target context.  The conflict controller is a concept that 

ncepts or instances.  Each of these represents multiple interpretations of semantically 

cts.  Each conflict controller has a corresponding semantic resolver that handles 

onciliation between the conflict controller’s child concepts or instances (see Fig. 5).  

l context is a concept or an instance that has been mapped to the local schema 

o represent the specific context of the local schema component.  The target context 

e resulting context in which the user wants to transform the meanings of data values 

atabases. 

he previous example, a concept Area has two instances Square Meter and Acre, and the 

ationship between the two instances is total one-one.  Thus, any data value mapped to 
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Square Meter can be converted to the corresponding value in Acre and vice versa.  As illustrated in 

Fig. 5, the instance Square Meter is called original context of COUNTY_AREA.area, because the 

attribute area is mapped to the instance Square Meter and actual data values stored in the area are 

represented in square meter (m2).  Similarly, the instance Acre is also called original context of the 

attribute gross_size in CITY-SIZE.  The parent concept of Square Meter and Acre (i.e., Area) is 

referred to as a conflict controller, which is mapped to REGION.area in the federated schema.  

When a user retrieves data sources mapped to Square Meter and wants to convert his output to 

Acre, the instance Acre becomes a target context.  In this particular case, the conflict controller, 

Area, has the corresponding semantic resolver that contains two simple conversion rules, one 

converting values from square meter to acre and the other converting values from acre to square 

meter.  The semantic resolver then captures conflict resolution knowledge about how to transform 

data values from COUNTY_AREA.area, which is originally in square meter, to values in acre (i.e., 

1 acre = 4047 square meters).  If a new instance (e.g., Square Feet) is added to the concept (e.g., 

Area) later, a domain expert creates associated new semantic transformation rules and encodes such 

City_Size County_Area

Region

name
gross_size map name area image

name
area map

Federated Schema

County SchemaCity Schema

Area

Square MeterAcre SCROL

Original Context Conflict Controller

Target Context

 

Fig. 5. Conflict Controller, Original Context and Target Context 



 20

rules into the appropriate semantic resolver. 

4.3 Step 3: Defining Ontology Relationship and Mapping Knowledge 

In order to determine whether two terms are semantically related and, if they are related, to what 

extent one can be translated to another, it is necessary to explicitly describe the relationship between 

SCROL components.  Thus, the next step requires the construction of the ontology relationship 

knowledge defined as follows: 

Definition 7. Let ORK be the ontology relationship knowledge.  ORK is defined as a relation 

on σ × σ × λ, where σ ∈ OC ∪ OI in Λ and λ ∈ RS ∪ RM in Λ (see Definitions 1, 2, 3, 4 and 5).  It 

is given by ORK ⊆ σ × σ × λ.  Note that ORK is derived from RS and RM. 

According to Fig. 6, Acre and Square Meter are specific instances of concept Area in SCROL, 

and these two instances have a total one-one mapping because every value in Acre is associated 

with exactly one value on in Square Meter and vice versa.  In this example, the ontology 

relationship knowledge can be expressed as: 

ORK = { (‘Square Meter’, ‘Acre’, ), (‘City’, ‘County’, part-of)} 
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Fig. 6. An Example of Ontology Mappings 
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After the construction of ORK, the next step is to establish mapping knowledge between 

SCROL and federated/local schemas.  Contextual knowledge in a database component is captured 

via mappings between SCROL and the schema of the component.  Therefore, the ontology mapping 

knowledge is defined as follows: 

Definition 8. Let OMK be the ontology mapping knowledge.  OMK is a set of mappings 

between schema (both federated and local schemas) and SCROL.  OMK is, therefore, defined as a 

relation on SCROL × (FS ∪ LS) and given by OMK ⊆ SCROL × (FS ∪ LS), where FS is a 

federated schema and LS is a set of participating local schemas. 

For example, as Fig. 6 illustrates, CITY_SIZE.gross_size is mapped to an instance Acre, 

which specifies that the measurement unit of CITY_SIZE.gross_size is acre.  On the other hand, 

COUNTY_AREA.area is mapped to Square Meter, which indicates that the measurement unit of 

COUNTY_AREA.area is square meter.  By looking at the given ontology mapping knowledge, the 

system is able to detect the fact that the two attributes are represented in different measurement 

units.  Also note that REGION.area in the federated schema is mapped to concept Area.  This 

particular mapping knowledge indicates that REGION.area is a conflict controller and, thus, its 

measurement unit could be either acre or square meter.  It allows the user to select his or her target 

context (either acre or square meter in this case), which is the resulting context in which the user 

wants to view the retrieved data.  The ontology mapping knowledge can be established at any level 

(e.g., attribute, entity, or relationship level).  At each level, either a concept or instance in SCROL is 

mapped to a schema component.  For example, the entity CITY_SIZE is mapped to concept City 

and the entity COUNTY_AREA is mapped to concept County, where the City is part-of Country.  

The established mappings are stored in the ontology-mapping repository.  The ontology mapping 

knowledge can be explicitly represented in the following form: 
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OMK = { (‘Area’, REGION.area), (‘Acre’, CITY_SIZE.gross_size), (‘Square Meter’, 
COUNTY_AREA.area), (‘Region’, REGION), (‘City’, CITY_SIZE), (‘County’, 
COUNTY_AREA) } 

 

5 Application and Evaluation of SCROL 

In this section, we describe how SCROL is used to detect and resolve a variety of data and schema 

conflicts.  Due to the space limitations, only one example of a data-level conflict and one example 

of a schema-level conflict is described in detail.  We also summarize the result of a detailed 

evaluation. 

5.1 Illustrative Examples to Demonstrate Application of SCROL 

5.1.1 Data Level Conflicts 

As an example, two heterogeneous databases from the land-use heterogeneous databases case are 

introduced in Fig. 7.  They contain information on land parcels and buildings.  Note that Fig. 7 

displays only the attributes and entities that are necessary to explain data precision conflicts.  

However, schema mappings that are already established between the federated schema and two 

local schemas are not shown in Fig. 7 due to limited space.  LAND_PARCEL.temperature in local 

schema 1 and LAND_PARCEL.avg_temperature in local schema 2 are semantically equivalent, and 

both are mapped to LAND_PARCEL.avg_temperature in the federated schema.  Similarly, 

CI_BUILDING.gross_area and RES_BUILDING.area_in_square_feet in local schema 1 and 

CI_BUILDING.gross_area_ci and RES_BUILDING.total_housing_unit_area_rb in local schema 2 

are mapped to CI_BUILDING.gross_area and RES_BUILDING.area_in_square_feet in the 

federated schema, respectively. 

There are three data unit conflicts in this example: 

• The measurement unit of LAND_PARCEL.temperature in local schema 1 is Celsius, 

whereas the unit of LAND_PARCEL.avg_temperature in local schema 2 is Fahrenheit.  



 23

• CI_BUILDING.gross_area in local schema 1 is in acres, while CI_BUILDING. 

gross_area_ci in local schema 2 is in square feet. 

• RES_BUILDING.area_in_square_feet in local schema 1 is in square feet, whereas 

RES_BUILDING.total_housing_unit_area_rb in local schema 2 is in square meters. 

As depicted in Fig. 7, these conflicts are identified by ontology mappings.  In SCROL, Area 

and Temperature are conflict controllers, and they have a disjoint relationship between each other.  

Recall that the disjoint relationship between two concepts indicates that they are not semantically 

equivalent.  Acre, Square Feet, and Square Meter have total one-one mapping relationships because 

their data values can be transformed from one to another without losing their meanings.  Similarly, 

Celsius and Fahrenheit have a total one-one mapping relationship. 

Based on the ontology mapping of the local schemas to SCROL, we may readily recognize 

data unit conflicts since each of the local schemas have attributes distinctly mapped to different 

instances of a concept.  For instance, Land_Parcel.Temperature in local schema 1 is mapped to the 

Celsius instance of the Temperature concept, whereas Land_Parcel.Avg_Temperature in local 

schema 2 is mapped to the Fahrenheit instance of the same concept.  After the initial detection of 

the semantic conflict, the appropriate transformation rule may be used to resolve the conflict and 
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Fig. 7. An Example of Data Unit Conflicts 
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convert the data values to any one of the data units captured in SCROL that represents the same 

concept.  For example, if the user queries LAND_PARCEL.avg_temperature from the federated 

schema, the two conflicting contexts (i.e., Celsius and Fahrenheit) are recognized from the conflict 

controller, Temperature, and the user is asked to specify his or her target context.  If the user wants 

to view the data in Celsius from the underlying two local databases, the user can select Celsius as a 

target context.  For the local schema 1, no semantic reconciliation process is required because the 

original and target contexts are identical.  On the other hand, the original and target contexts of 

LAND_PARCEL.avg_temperature in schema 2 are different.  Therefore, each data value retrieved 

from local schema 2 is converted to data value in Celsius according to the transformation rules and 

then the resulting data retrieved from both local schemas are presented to the user.  The other two 

conflicts can also be detected easily and resolved in a similar way. 

5.1.2 Schema Level Conflicts 

Consider the three different databases representing information about taxes shown in Fig. 8.  All 

describe the sum of collected tax amounts (in thousands) of different taxes each year for a particular 

county.  In local schema 1, REAL_PROPERTY stores one tuple per year per tax type 

(REAL_PROPERTY.tax_type) with amount of tax paid.  TAX_AMOUNT in local schema 2 

contains one tuple per year, and one attribute for each tax type (TAX_AMOUNT. 

surface_water_bill and TAX_AMOUNT.property_tax), where the value of the attribute is the tax 

amount paid.  Local schema 3, in contrast, has one relation for each tax (SURFACE_WATER_ 

BILL and PROPERTY_TAX) and each relation has one tuple per year with its tax amount paid 

(SURFACE_WATER_BILL.amount and PROPERTY_TAX.amount).  Hence, this situation is a 

typical schema discrepancy conflict.   



 

As shown in Fig. 8, these conflicts are identified by ontology mappings.  Note that the 

ontology mapping for the attribute, tax_type, in local schema 1 is defined as mapping-by-value 

because each tuple value itself is a tax type; that is, either “property tax” or “surface water bill.”  

During the semantic reconciliation, the Conflict Resolver determines the tax type in the local 

schema 1 by looking at each data value stored in the REAL_PROPERTY.tax_type and then assigns 

each data value captured in the REAL_PROPERTY.tax_amount into the corresponding attribute in 

the federated schema.  In the case of local schema 3, the name of each tax type is the name of an 

entity class.  SURFACE_WATER_BILL.amount is mapped to Surface_Water_Bill and 

PROPERTY_TAX.amount is mapped to Property_Tax in SCROL.  Thus, if the user queries tax 

amounts of surface water bills through REAL_PROPERTY.surface_water_bill from the federated 

schema, then only data from SURFACE_WATER_BILL.amount in local schema 3 is retrieved. 

5.2 Evaluation of SCROL 

We tested SCROL using three different cases, each of which represents a different application 

domain.  The first case, called “land-use heterogeneous databases,” involved three heterogeneous 

databases used in land-use applications.  These databases were developed to store information about 
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buildings constructed in residential or commercial/industrial areas.  We adopted the heterogeneous 

database schemas originally described in [22] and modified and expanded them to include as many 

semantic conflicts as possible.  The second case, “ecology heterogeneous databases,” involved a set 

of databases used by ecologists for ecological system analysis at a large research  organization.  It 

consisted of three databases designed for different purposes.  The first captured soil-related 

information; the second was designed for fire simulation, while the third was used to capture 

vegetation and different water types.  The third case, called “publication databases,” involved two 

databases for publications, each of which was independently developed by researchers and 

librarians.  The two database schemas were originally used by [1] to demonstrate schema 

integration methodology.  We modified and extended the two schemas to evaluate and demonstrate 

the performance of our system. 

The first two cases are categorized as being in the geographic database domain, while the 

third deals with non-geographic databases.  The two geographic database cases were selected 

because temporal and spatial dimensions of geographic data objects are frequent and significant 

sources of semantic conflicts that lead to multiple interpretations [23].  Finally, the publication case 

was also selected in order to validate the effectiveness of SCROL in a non-geographic domain.  We 

selected the specific cases from among many other databases because the three cases were 

representative of commonly used geographic and non-geographic databases and the three cases, 

combined, contained all of the different types of semantic conflicts in the classification framework 

of semantic conflicts described in Section 4.1.  The initial construction of SCROL consists of about 

120 concepts and 160 instances.  Fig. 9 shows the initial construction of SCROL in zoom-out mode.  

All the local schemas and federated schemas for all three cases were then mapped to SCROL. 

Three different cases consisting of 123 relations and 434 attributes were tested to evaluate 

SCROL.  Among the total of the 557 database components (i.e., the sum of 123 relations and 434 
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attributes) used during the evaluation phase, 201 components involved semantic conflicts.  The 201 

heterogeneous components caused 68 conflicts: 24 data-level conflicts and 44 schema-level 

conflicts.  Table 4 shows a summary of the results obtained from the three cases. 

All of the conflicts found at the data level except for “known data value reliability” and 

“spatial domain conflicts” were resolved by the semantic mediators using SCROL and ontology 

mapping knowledge.  Known data value reliability conflicts cannot be resolved semantically 

because they are not the cause of multiple interpretations of the same data, i.e., semantic 

heterogeneity.  The differences in data source reliability are generally due to the use of different 

measuring instruments, which affect the precision and accuracy of data being collected.  Spatial 

 
Fig. 9. Initial Construction of SCROL in Zoom-out Mode 
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domain conflicts are also not easily resolved by the semantic mediators, since differences in spatial 

domain specifications are legally defined by different people who have different needs in different 

application domains.  However, as long as source database schemas are properly mapped to the 

matching ontology components and these conflicts can be classified in SCROL, the semantic 

mediators can automatically detect differences between them and provide a partial solution by 

notifying the user which information sources have conflicts.  Unlike data-level semantic conflicts, 

semantic reconciliation of some schema-level conflicts requires both SCROL and schema mapping 

knowledge.  Schema mapping knowledge contains all details about local schema structures [26].  

The result also shows that both schema mapping knowledge and ontology mapping knowledge play 

important roles as knowledge sources for semantic mediators during global query processing.  

Detailed analyses of the test results can be found in [25].  In conclusion, SCROL plays a pivotal 

role in our proposed approach.  To overcome the limitations of the traditional federated approach 

(e.g., lack of semantic-richness and flexibility) and the ontology-based domain model approach (e.g., 

Table 4 
Summary of Semantic Conflicts Resulting from the Three Cases 

Conflict Type Number of 
Conflicts Found 

Number of 
Conflict Resolved 

Data Value 2 2 

Data Representation 5 5 

Data Unit 6 6 

Data Precision 4 4 

Known Data Value Reliability 6 0* 
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Spatial Domain 1 0* 

Naming 20 20 

Entity Identifier 2 2 

Schema Isomorphism 7 7 

Generalization 3 3 

Aggregation 6 6 
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Schematic Discrepancies 6 6 

* only partially supported 
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complexity), we presented a crossbreed approach that provides enough semantic richness to detect 

and resolve semantic conflicts while maintaining a much simpler ontology. 

6 Contributions and Comparison with Other Approaches 

Our major contributions are that SCROL is a domain independent ontology with a simple structure. 

However, it is powerful enough to identify and resolve a large number of different types of semantic 

conflicts as explained in the earlier sections.  

Our approach is different from the ontology-based domain model approach.  The domain 

model approach attempts to resolve semantic heterogeneity by leveraging the richness of domain 

knowledge.  The purpose of using ontologies is to represent knowledge about a target application 

domain.  It is, however, very difficult to construct and manage a domain model because a domain 

model is much more complex than a conventional shared schema.  A domain model requires 

capturing tacit knowledge within a certain domain in great detail in order to clarify meaning of each 

data object.  To release this burden, many researchers in the AI community have made efforts on 

knowledge sharing and reusability [27].  Along with these endeavors, the need of ontology 

standardization has been addressed.  To date, however, there is no formal agreement on these 

efforts.  Furthermore, this approach requires a significant amount of reasoning with a domain model 

whenever it attempts to resolve even a simple semantic conflict because the model itself is 

inherently complex.  We believe, however, that a domain model does not need to be complex if its 

purpose is only to detect and resolve semantic conflicts.  This can be accomplished by avoiding 

integration of all tacit knowledge relevant to a particular domain application. 

The Context Interchange (COIN) uses a domain model [8].  A domain model in COIN is a 

collection of primitive types and semantic types (similar to type in the object-oriented paradigm), 

which defines the application domain corresponding to the data sources that are to be integrated.  

Each type in a domain model binds a specific context (“semantic value”) that is provided by local 
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data sources when a query occurs.  The data value is exchanged from one system to another by 

converting the semantic value from its source context to its receiving context through a “context 

mediator.”  The context mediator takes control of all requests for data from the receiver (i.e., 

application), then translates the query to the source context, executes the query in the source 

database, and finally converts the data into the receiver’s context.  Conversion functions are used to 

convert semantic values from one context to another.  The context information can be obtained by 

examining the data environment of each data source.  A data environment specifies the context of 

data values and may involve mappings, lookup tables, rules, predicates, or other knowledge 

representations.  A domain model (i.e., shared-ontology) specifies terminology mappings.  These 

mappings describe naming equivalencies among the component information systems, so that 

references to attributes, meta-attributes, and their values in one information system can be translated 

to the equivalent names in another.  This approach, however, focuses solely on the semantics of 

individual data items, i.e., data-level conflicts.  Since the context information is represented at the 

level of data values, the context mediation proposed in this approach is not able to resolve semantic 

conflicts at the schema level.  In conclusion, this work, as indicated in Goh et al. [8], complements 

rather than competes with the existing domain model approach. 

While the ontology-based domain model approach suffers from its complexity, the other two 

popular approaches to heterogeneous database integration, the global schema and the federated 

schema approach, lack semantic-richness and flexibility [32].  In the global schema approach, each 

local database schema is combined into a single integrated schema [2].  It is an integration of 

component database systems that may not be autonomous.  A federated approach, on the other hand, 

assumes a collection of cooperating but autonomous component database systems [36].  In the 

federated approach, each local database exports a portion of its schema that it is willing to share 

with other databases [7].  Each database can then use these export schemas to define an import 
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schema, a partial global schema representing information from remote databases that is accessible 

locally. 

In the federated approach, two methodologies have been proposed: the tightly coupled 

approach and the loosely coupled approach [36].  The distinction is based on who manages the 

federation and how the component databases are integrated.  In the loosely coupled approach, a 

federation is created and managed by the user and there is no centralized control over the system.  

Users can directly interact with local databases instead of being restricted to querying federated 

schemas.  One of the main drawbacks of this approach is that it places too heavy a burden on users 

by requiring them to understand the underlying local databases and provides little or no support for 

identifying semantic conflicts [9].  This approach typically requires users to engage in the detection 

and resolution of semantic conflicts.  Consequently, users are also responsible for semantic conflict 

resolution.  A federated system is tightly coupled if the federation is created and maintained by 

administrators, not by users.  One or more federated schemas are constructed from the schemas of 

the participating local databases.  In most cases, the schemas of the local databases (called 

“component databases”) are heterogeneous.  This approach provides uniform and integrated access 

to the underlying local databases, because the federated schema serves as a front-end system that 

supports a canonical data model (common model) and a single global query language on top of 

these local database systems.  In this approach, semantic conflicts must be identified and resolved a 

priori by the administrators. 

Both approaches are traditional and many researchers have identified a scalability problem in 

these approaches [8, 33].  The tightly coupled approach is decent in that it supports well-integrated 

data access to distributed, heterogeneous databases because this approach relies on a highly 

integrated shared schema.  However, it is very difficult to construct and maintain a federated 

schema that represents all of the participating data sources without any semantic conflicts.  The 
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loosely coupled approach is reasonable in that it requires little central administration.  In other 

words, it is the user who creates and maintains a federated schema.  However, due to the 

decentralization, users must have knowledge on the data sources to resolve the potential conflicts.  

Human users must be engaged in detecting and resolving conflicts. 

Our paper presents a hybrid approach by addressing the limitations of these approaches.  

While achieving enough semantic richness to detect and resolve semantic conflicts, our approach 

successfully retains SCROL at a lower level of complexity.  We have a federated schema, but our 

approach requires only a reasonable amount of schema integration effort because semantic conflicts 

do not have to be identified and resolved a priori by a centralized administrator.  The specific 

context of each data object in the schema is identified through mappings to the extendable, domain 

independent ontology, and the local database administrators and domain experts are responsible for 

encoding semantic conflict classification knowledge.  Furthermore, SCROL was not designed to 

represent domain knowledge; thus, it does not have to be complex. 

7 Conclusion and Future Research 

We have presented details of an ontology called SCROL in this paper.  SCROL can be used to 

identify and resolve semantic conflicts among multiple heterogeneous databases.  We have also 

presented results an evaluation of SCROL to show how it comprehensively identifies and resolves 

many different types of conflicts. 

There are several interesting extensions, which we are currently exploring.  The research 

presented in this paper assumes that the underlying information sources are structured data that may 

reside in the structurally organized text files or database systems.  However, the unprecedented 

growth of Internet technologies has made vast amounts of resources instantly accessible to various 

users via the World Wide Web (WWW).  The majority of data available on the Internet are semi-

structured or unstructured, consisting of multimedia data such as audio, video, and image files as 
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well as textual documents such as Hypertext Markup Language (HTML).  Whereas HTML is semi-

structured and designed only to present information to human users, the promising Extensible 

Markup Language (XML) technology provides a highly structured format that can be processed by 

machines on the Internet.  However, it is still required to capture context knowledge on the meaning 

of each tag for semantic interoperability among heterogeneous XML formats.  We are currently 

investigating XML as a standard method for exchanging various knowledge captured in SCROL 

with other systems on the Internet. 

We are also extending our work to semantic interoperability in digital libraries.  A digital 

library is a networked system environment where individual components interact to allow users to 

submit and access digital content.  Among many issues and research directions in digital libraries 

identified by Ram et al. [31], ensuring interoperability and knowledge-based information sharing is 

one of the key aspects of successful implementation of digital libraries.  Mediator/agent-based 

business transactions on the Internet (i.e., electronic commerce, or EC) is another interesting 

extension of the current research.  In the multi-agent systems (MAS) environment, it is natural to 

deal with heterogeneous agents that attempt to communicate with one another in different agent 

communication languages (ACL).  Since each ACL is differentiated from others in terms of its 

syntax as well as semantics (e.g., FIPA-ACL and KQML), the interoperability issue in this area 

becomes interesting.  We propose to extend these issues as an important direction for extending the 

research described in this paper. 
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