

Semantic Conflict Resolution Ontology (SCROL): An Ontology for
Detecting and Resolving Data- and Schema-Level Semantic Conflicts

Sudha Ram
Department of Management Information System

Eller College of Business and Public Administration
The University of Arizona

Tucson, AZ 85721
E-mail: ram@bpa.arizona.edu

URL: http://vishnu.bpa.arizona.edu/ram

Jinsoo Park
Information and Decision Sciences Department

Carlson School of Management
University of Minnesota
Minneapolis, MN 55455
E-mail: park@umn.edu

URL: http://kimchi.csom.umn.edu

Index Terms: Heterogeneous Databases, Ontology, Semantic Conflict Resolution, Semantic

Modeling

Working Paper
Last revised on December 2001

http://vishnu.bpa.arizona.edu/ram
http://vishnu.bpa.arizona.edu/ram
http://kimchi.csom.umn.edu/
http://kimchi.csom.umn.edu/

Semantic Conflict Resolution Ontology (SCROL): An Ontology for Detecting
and Resolving Data- and Schema-Level Semantic Conflicts

Abstract

Establishing semantic interoperability among heterogeneous information sources has been a critical

issue in the database community for the past two decades. Despite the critical importance, current

approaches to semantic interoperability of heterogeneous databases have not been sufficiently

effective. The federated schema approach has been criticized for its lack of semantic richness and

flexibility. The domain ontology approach addresses the problem of semantic richness but lacks

domain generality. We propose a formal structure of a common ontology called Semantic Conflict

Resolution Ontology (SCROL) that addresses the inherent difficulties in the conventional

approaches: lack of semantic richness and limited domain generality. SCROL provides a

systematic method for automatically detecting and resolving various semantic conflicts in

heterogeneous databases. SCROL is formally defined to provide a dynamic mechanism of

comparing and manipulating contextual knowledge of each information source, which is useful in

semantic interoperability among heterogeneous databases. We show how SCROL is used for

detecting semantic conflicts between semantically equivalent data elements. Using illustrative

examples, we also demonstrate how the contextual knowledge captured in SCROL is used to detect

and resolve semantic conflicts. In addition, we present evaluation results to show that SCROL can

be successfully used to automate the process of identifying and resolving semantic conflicts.

SCROL can also be used to provide interoperability for e-business systems, such as B2B systems.

 1

1 Introduction

The concept of ontology, which originates from philosophy, has been widely employed by several

research communities. In the artificial intelligence (AI) community, ontologies have been used to

capture domain knowledge for knowledge-based systems. The knowledge is typically represented

in the knowledge-based system’s representation language using the vocabulary provided by an

ontology. In the distributed artificial intelligence (DAI) community, which includes research on

distributed problem solving (DPS) and multi-agent systems (MAS), ontologies have been accepted

as an effective means to facilitate collaboration and communication among agents [39]. The need

for ontologies has also been addressed in the information retrieval area to facilitate semantic

information searching. Other areas, such as natural language processing (NLP), utilize ontologies

to facilitate natural language generation and interpretation [21]. The database community is not an

exception. In particular, research on distributed, heterogeneous databases has begun to exploit

ontologies in order to support semantic interoperability.

In this paper, we present a formally defined ontology called SCROL (Semantic Conflict

Resolution Ontology) that can be used to identify and resolve semantic conflicts among

heterogeneous databases. Consider a county tax administrator Mary Beth, who is interested in

understanding how property tax assessments are different across various counties within her

jurisdiction. To answer this question, she may have to access many individual county databases

simultaneously. However a major impediment is that, taxes are captured in different ways in each

database. The Pima county database stores yearly tax amounts for each property, while Pinal

county stores tax rates as a percentage of property value. Maricopa county, on the other hand,

stores the monthly amount owed on each property. To be able to properly compare property taxes,

Mary Beth has to understand these differences and also know how to resolve them before she can

attempt to compare the taxes. Similarly, there are a host of other semantic differences which need

 2

to be properly identified and resolved before databases can be used effectively. SCROL is intended

to tackle this problem of recognizing and resolving semantic conflicts among multiple databases.

Our major objective is to provide a robust mechanism for automating (to the extent possible) the

semantic conflict identification and resolution process. SCROL has a simple structure yet results of

our evaluation show that it is powerful enough to tackle a large variety of different semantic

conflicts.

Semantic interoperability can be defined as the ability of participating system domains to

understand the meaning and use of terminology from different domains and the axiomatic mapping

ability between agreed concepts to make a semantically compatible information environment [31].

Establishing semantic interoperability among heterogeneous and disparate information sources has

been a critical issue meriting active research within the database community for the past two

decades [35]. Kashyap and Seth identified two essential issues for achieving semantic

interoperability in a multidatabase environment [16]. The first issue concerns the identification of

semantically related data in different database systems and the subsequent resolution of the

schematic differences among the semantically related data. A key aspect of identifying

semantically similar data in different databases involves making semantics explicit [5]. Semantic

similarity depends on the context in which a data object is used, and the contextual representation of

a data object concerns how the data object is used [15]. Therefore, context is a critical element for

capturing and representing similarities of data objects. Several techniques allow us to determine

semantically similar objects. These include semantic modeling approaches, formal logic-based

approaches, classifications of terminology, formal languages, knowledge-based systems, and the

use of a shared ontology [35].

The second important issue relates to the access and use of a large number of autonomous

databases without prior knowledge of their information content. In general, users are required to be

 3

familiar with the content and structure of the information sources in order to be able to obtain an

answer for a particular query. To reduce the burden of acquiring such familiarity, one promising

approach is based on graphical manipulation of database schema diagrams (or conceptual schema

interfaces) [4]. This approach provides a uniform method for query translation and heterogeneity

resolution in a multidatabase environment. Another approach is to explicitly capture the semantic

content of the individual databases. It is, therefore, very important to understand the semantics of

each schema component and to capture and reason by using the semantics [16].

Although semantic data models are commonly used in database design to capture the

semantics of the database, the meta-information (i.e., tacit knowledge) captured during the design

phase is not explicitly represented in the resulting database; hence, such information cannot be

completely accessible to applications, queries, or users [41]. Therefore, a semantic data model that

captures domain meta-information (i.e., entity classes, relationships, constraints, cardinalities, etc.)

alone is not enough to support semantic interoperability among heterogeneous databases. While the

different conceptual database schemas designed in a semantic data model provide the logical

descriptions and relationships of the information within the databases, an ontology provides the

concepts that represent the domain knowledge [6]. Basically, an ontology is a specification of the

conceptualization of the target world [12] and hence provides a common vocabulary to describe the

target world, which is one of its most important roles. In this respect, an ontology can be defined as

a taxonomy of concepts, which includes relationships and constraints among concepts in order to

eliminate unexpected or undesired interpretation. Each term (i.e., each concept) in an ontology has

a unique meaning determined (and constrained) by richer relationships with other terms. The

relationships among given terms in an ontology are extremely important because it is the

relationships that express the knowledge specific to the application domain. In practice, it is often

 4

very difficult to distinguish between “ontologies” and “knowledge” because there is no clear

boundary between them as we observe in Cyc, the knowledge base described by Lenat [17].

The problem of semantic interoperability has generally been tackled by one of two

approaches: the federated schema approach or the domain ontology approach. The federated

schema approach attempts to construct a federated (or global) schema and establish mappings

between the federated schema and the participating local schemas. However, the drawback of this

approach is its lack of semantic richness and flexibility [32]. The other approach – the domain

ontology approach – strives to solve the problem of lack of semantic richness by capturing the tacit

knowledge within a certain domain in great detail in order to provide a rich conceptualization of

data objects and their relationships. Even though such an approach may be theoretically valid, the

application of the ontology approach in practice is practically infeasible due to the inherent

complexities of the knowledge domain. Hence, the domain ontology approach is typically applied

only to a restricted application domain, which limits its general applicability. Furthermore, in order

to represent complex conceptualizations, the formalism used in representing the ontology also often

becomes too complicated for wide application.

Our hybrid approach is based on the use of a common ontology, which specifies a vocabulary

to describe and interpret shared information among its users. Our approach is similar to the

federated schema approach in the sense that there is a high-level domain model playing a role of

shared schema while ensuring the autonomy of the local schemas. However, a domain model is

different from the conventional federated schema because domain knowledge captured in the

domain model is generally represented in a logic language using the vocabulary provided by an

ontology. An ontology-based domain model captures much richer semantics and covers a much

broader range of knowledge within a target domain. Our approach is also similar to the

conventional ontology approach in that an ontology-based domain model is constructed and used to

 5

describe the domain knowledge; however, it is different from the conventional approach in that we

provide a simple formalism to capture only the domain knowledge pertaining to potential semantic

conflicts. One advantage of this simplified ontology is that it is not domain-specific. Our approach

does not lose any semantic richness since it also provides a semantic model that captures the

intensional description of the application domain. A promising approach to semantic

interoperability is thus to adopt a common ontology as a basis for mutual understanding, in addition

to the use of a semantic data model [14]. Hence, we argue that using both a common ontology and

a semantic data model will provide a more complete understanding of the application domain.

Our paper is organized as follows. Section 2 explains the rationale behind and justification

for using a common ontology approach. In Section 3, our common ontology, called Semantic

Conflict Resolution Ontology (SCROL), is formally defined. Section 4 presents the

implementation of SCROL based on the classification scheme of semantic conflicts that provide the

foundation for constructing SCROL. We also describe the ontology mapping and relationship

knowledge, which are derived from the formal structure of SCROL. Section 5 presents examples

demonstrating the use of SCROL. In addition, empirical results are discussed to evaluate the

usefulness of SCROL. In Section 6, our approach is compared with previous approaches and our

contributions are summarized. Finally, our future research directions are addressed in Section 7.

2 Need for a Common Ontology to Facilitate Semantic Interoperability

In this section, we first examine the concept of “ontology,” a term commonly used in the fields of

AI and knowledge management (KM). We then argue that the design of a common ontology is

needed to facilitate interoperability in multiple heterogeneous systems. The (common) ontology is

defined by various researchers as:

• The specification of a representational vocabulary for a shared domain of discourse, which

may include definitions of classes, relations, functions, and other objects [12].

 6

• A concept system in which all concepts are defined. Concepts are interpreted in a

declarative way, as standing for the sets of their instances. This concept system is limitative

in the sense that concepts can only be used if they are defined in the ontology. Definitions

of concepts are formal where possible and informal otherwise [40].

• A model of some portion of the world, which is described by defining a set of

representational terms [20].

• A means of achieving consistent communication between agents in multi-agent systems [28].

• A collection of concepts and interconnections to describe information units [14].

We use the term common ontology as a vocabulary of representational terms (concepts) with

agreed-upon definitions in the form of human readable text and machine-enforceable, declarative

constraints (agent readable format) on their well-formed use [10].

Semantic interoperability requires resolving various context-dependent incompatibilities, i.e.,

semantic conflicts [23]. The context refers to the knowledge that is required to reason about another

system for the purpose of answering a specific query [24]. Therefore, it is important to provide

contextual knowledge of domain applications in order to ensure semantic interoperability. Siegel et

al. [37] argue that the most basic requirement of the use of context for heterogeneous databases is

the existence of common metadata vocabularies, so that any system in the enterprise can use such a

common vocabulary to develop rules, i.e., context knowledge describing data semantics. In this

approach, terminology outside of this common vocabulary must be translated to the common

vocabulary, otherwise the comparison of data semantics will not be possible [37]. Therefore, we

believe that this approach is more practical than trying to agree upon broad-based standards for

databases. Moreover, it is important to have automatic ways of comparing and manipulating the

common vocabulary in order for a context knowledge representation to be useful for semantic

interoperability among heterogeneous databases [16].

 7

Consequently, in our framework, the common vocabulary that represents context knowledge

is captured in the form of a common ontology, called Semantic Conflict Resolution OntoLogy

(SCROL), which provides a systematic way of automatically detecting and dynamically resolving

various semantic conflicts found in heterogeneous databases. In addition, all schema components

captured by a common semantic data model, called USM* [29], are mapped to SCROL. The use of

SCROL, in which all data objects have been mapped, has several advantages:

• It facilitates sharing and reuse [40].

• Mappings can be associated with each database and application, and can be applied by

mediators [13].

• An administrator constructing or maintaining mappings needs to consider only his or her

own data objects, not those in any other database or application program [13].

Thus, a common ontology-based manipulation of complex and heterogeneous databases is

one of the most desirable solutions for achieving semantic interoperability. There are, however,

four important issues that need to be addressed. In working with a common ontology, Kahng and

McLeod [14] discusses four of these:

• Contents: The contents of the common ontology are heavily affected by the semantic

conflict types to be resolved.

• Construction and Maintenance: The initial construction of a common ontology prior to any

information sharing is a challenging problem. Further, it is very important to allow the

evolution of the common ontology.

• Mapping: Mapping from an information source to the common ontology is typically the

most labor-intensive and time-consuming process and is mostly carried out by domain

experts.

• Relevance: The similarities and differences between two data objects from different

databases or the relevance of exported information to a given request needs to be determined

at some point within the information sharing activities.

 8

The first and second issues can be resolved by establishing agreements on the meaning of the

terms used in a common ontology, i.e., ontological commitment [12]. In order to make the contents

of the common ontology as general as possible, and thus usable in various environments, we use a

comprehensive classification framework of semantic conflicts [30], which gives clear guidelines for

capturing semantic conflicts in various heterogeneous databases using a well defined set of

relationships between concepts to characterize application domains. The classification framework

has been encoded into the common ontology, SCROL, and is describe in more detail in Section 4.1.

After its initial construction, we allow evolution of the common ontology. Since semantic conflict

taxonomy is possibly an approximation based on an agreement among participants, a system

designed to solve the semantic conflicts is necessarily incremental and iterative [23]. Therefore, our

approach (i.e., initial comprehensive construction and then the adoption of incremental and iterative

evolution of the common ontology) is preferred because it allows the system to fine-tune and

accommodate more contents as the system grows, while at the same time allowing the participating

systems that may have evolving schemas to remain autonomous.

After the agreement has been reached, the next step (the third issue) is to establish mappings

between information sources and the common ontology. Although the establishment of a

comprehensive taxonomy and the mapping process may be difficult and time-consuming, being

sharable and reusable by multiple heterogeneous environments probably justifies the extra effort in

the design. The mapping is encoded in terms of the ontology mapping knowledge, described in

Section 4.3. We approach the fourth issue by defining a formal structure of SCROL (Section 3) that

allows the designer to describe how concepts are related to each other by specifying relationships

between them in terms of the ontology relationship knowledge (Section 4.3). It provides initial

linguistic links between concepts. In addition, the formal definitions of relationships in SCROL

 9

clearly lead to a single semantic interpretation of a given concept via semantic transformation

between different contexts (Section 4.2). Detailed descriptions are illustrated in later sections.

3 SCROL Constructs and Definitions

Gruber [11] maintains that formal ontologies are viewed as designed artifacts, formulated for

specific purposes and evaluated against object design criteria. He suggests five design criteria for

ontologies whose purpose is knowledge sharing and interoperability among applications based on a

shared conceptualization: (1) clarity (i.e., objective definitions), (2) coherence (i.e., logically

consistent definitions), (3) extensibility (i.e., ability to define new terms based on the existing

vocabulary without revisions of the existing definitions), (4) minimal encoding bias (i.e.,

specification of the conceptualization at the knowledge level without depending on a particular

symbol-level encoding), and (5) minimal ontological commitment (i.e., specifying the weakest

theory and defining minimal terms that are essential to the communication of knowledge consistent

with that theory). Ouksel, however, argues that it is not practically nor theoretically possible to

develop and maintain an ontology that strictly adheres to these design criteria in an environment of

autonomous, dynamic, and heterogeneous databases [23]. We believe that most currently existing

ontologies have been developed mainly for the purpose of representing domain specific or

commonsense knowledge, and they do not identify nor accurately classify semantic conflicts [23].

However, SCROL directly addresses this issue.

We formalized SCROL such that it can provide a systematic method for automatically

detecting and assisting in resolving various semantic conflicts in heterogeneous databases. Unlike

other traditional ontology frameworks designed to capture domain specific [19, 20, 40] or

commonsense knowledge [3, 18, 38], SCROL is developed to encode extensible knowledge on

commonly found semantic conflicts that have been identified in our classification framework. It

then provides an automatic way of comparing and manipulating contextual knowledge of each

 10

information source, which is used for semantic transformation across heterogeneous databases.

Before we describe how SCROL can be structured to support semantic interoperability among

heterogeneous databases, we first introduce and formally define the basic constructs of SCROL.

The structure of SCROL is a tree. A tree is a partially ordered set in which the predecessors

(e.g., superconcepts) of each element are well-ordered; i.e., if T = {s | s < t}, where s, t ∈ T and s is

a predecessor of t, then each T is well-ordered [34]. Therefore, a tree can be used as a theoretical

model of hierarchies or sets over which a “parenthood” relation (also called a “vertical” relation in

our framework) is defined. We slightly extend and modify the basic definition of a tree to define

so-called “horizontal” relations (i.e., “sibling” relations and “domain value mapping” relations,

which are discussed later). Note that the formal model of SCROL does not seek to describe a single

object but a whole class of objects and to define its formal structure, that is, to achieve logical

organization.

Definition 1. A Semantic Conflict Resolution Ontology (SCROL) is a tuple Λ = (OC, OI,

RS, RM, u), where OC, OI, RP, RS, RM, and u are as defined below. Its structure is graphically

illustrated in Fig. 1, and the graphical notation of each SCROL construct is illustrated in Fig. 2.

Definitions 2. OC is a distinct set of concepts. The oval shapes depicted in Fig. 1 represent

concepts. Each element of OC is called a node of Λ. Concepts are represented as terms. A concept

is related to instances in that a concept is a generalized abstract term that may have several concrete

instances. For example, the term Temperature is a concept and Fahrenheit and Celsius are instances

of Temperature. Fahrenheit and Celsius are two different specific expressions of Temperature. A

concept may have zero or more children, and each child may be another concept or an instance. A

concept may have exactly one parent concept. A concept that does not have any child concept is a

leaf concept, i.e., a leaf concept may have one or more instances as children, but cannot have any

concept as its child. Concepts have properties. Such properties are defined as follows:

 Concept Concept Concept

is-a

mapping

Root

 Concept Concept

 Concept Concept Concept Concept Concept

 Concept Concept Concept Concept

 Instance Instance Instance

 Instance Instance Instance Instance

 Instance Instance Instance Instance Instance

disjoint

disjoint part-of

 part-of is-amapping

mapping

mapping

 Concept Concept Concept

peer

Fig. 1. Structure of SCROL
• Name

• Defini

• Subco

subcon

proper

• Subco

concep

• Instan

proper

• Refere

inform

attribu

Concept Instance Parenthood

Relationship
Sibling Relationship
Mapping Relationship

Fig 2. Graphical Notation of SCROL Constructs
11

is a term that represents a concept.

tion is an agreed upon description of a concept written in plain, human-readable text.

ncept is a property that is present in all concepts. This property contains a list of

cepts (children) belonging to the concept. All leaf concepts have null values in this

ty because they do not have any subconcepts (but may have instances as stated above).

ncept-of is a mandatory property of all concepts except the root. It contains its parent

t (called “superconcept”). A concept is allowed to have at most one parent concept.

ce is a property for only leaf concepts that have instances as their children. This

ty contains a list of instances belonging to the concept.

nced-by is a property that is present only in leaf concepts. It is used to store mapping

ation about the underlying schema components (i.e., entity classes, relationships, and

tes) that are mapped to the concepts`. This property is expressed as an ordered tuple

 12

< s, o, t, l > where s is a referring schema, o is a referring object id (oid), t is an object type

(i.e., entity class, relationship, or attribute), and l is a level of reference (i.e., by-type or by-

value). The by-type means the object is referenced by its type and domain, while by-value

refers to the data value itself. The default value of l is by-type.

Definitions 3. OI in Λ is a distinct set of instances. The rectangles depicted in Fig. 1

represent instances. Each element of OI is also called a node of Λ. Instances are also represented

as terms. Every instance has exactly one concept as its parent. Instances do not have children.

Instances have properties. Such properties are defined as follows:

• Name is a term that represents an instance.

• Definition is an agreed upon description of an instance written in plain, human-readable text.

• Instance-of is a mandatory property of all instances. It contains its parent concept. An

instance has exactly one parent concept.

• Referenced-by is a property that is present in every instance. It is used to store mapping

information about the underlying schema components (i.e., entity classes, relationships, and

attributes) that are mapped to the concepts or instances. This property is expressed as an

ordered tuple < s, o, t, l > where s is a referring schema, o is a referring object id (oid), t is

an object type (i.e., entity class, relationship, or attribute), and l is a level of reference which

is only by-type.

Definition 4. RS refers to a sibling relationship and is a relation on OC. RS can occur only

between two concepts, but not between two instances. RS consists of a disjoint relationship, a peer

relationship, a part-of relationship, and an is-a relationship and has the following form: <x, y, F>,

where x, y ∈ OC and F = {disjoint, peer, is-a, part-of}. Note that disjoint and peer are symmetric

but is-a and part-of are asymmetric. They are all transitive. The dotted vertical lines between

concepts depicted in Fig. 1 represent sibling relationships with proper labels indicating either

disjoint, peer, part-of, or is-a relationships.

• The disjoint relationship between two concepts indicates that they are not semantically

equivalent. For example, the concepts Distance and Temperature have a disjoint

relationship because they are not semantically equivalent.

• The peer relationship is used when two concepts are semantically equivalent, that is, two

concepts represent the same real world object, thus it is possible for the given two concepts

to define one-to-one mapping between all the instances of these two concepts. Therefore,

instances belonging to the two concepts can be transformed into each other through semantic

transformation rules. In this case, the domain value mapping relationships (defined in the

next definition) between all instances of such concepts are always one-to-one. For instance,

as illustrated in Fig. 3, the subconcepts of a concept Localized Time have peer relationships.

They are peers because in every instance they can have one-to-one semantic mappings; thus,

they can be transformed into each other in a given context. For instance, the transaction

time of stock trades recorded in Seoul can be converted to the local time in Bombay.

• The part-of relationship is similar to an “aggregation” in semantic data models and object-

oriented data models. For example, the concept City is a part-of Urban Area which is a part-

of County. The concept County is again a part-of a concept State/Providence and so forth.

• The is-a relationship is the same as “generalization/specialization” in semantic data models

and object-oriented data models. For instance, the concept Water can have several

specialized concepts, such as Ground Water and Surface Water.

Note that we don’t have “overlapping” relationships because overlapping relationships can be
Localized Time

GMT
-12:00

GMT
-11:00

GMT
-10:00

GMT-9:00

GMT-7:00
GMT-6:00

GMT-5:00

GMT-2:00

GMT-3:30

GMT-3:00

GMT-4:00

GMT
+2:00

GMT
+1:00

GMT

GMT-1:00

GMT
+3:00

GMT
+3:30

GMT
+4:00

GMT
+4:30

GMT
+5:00

GMT
+5:30

GMT
+6:00

GMT
+7:00

GMT
+9:00GMT

+8:00

GMT
+10:00

GMT
+11:00

GMT
+12:00

GMT-8:00

Hawaii

Alaska

Pacific
Time

Arizona

Mountain
Time

Central
Time

Eastern
Time

Indiana

Bombay

Calcutta

Madras

NewDelhi

Colombo

Tokyo

Osaka

Sapporo
Seoul

GMT
+9:30

Korea

 peer

Fig. 3. Peer Relationship Example
13

 14

integrated and depicted through generalization, i.e., is-a relationship. The disjoint and peer

relationships are used by mediators to determine whether semantic conflicts exist (particularly data-

level conflicts) and, if semantic conflicts exist, whether they are resolvable. The purpose of using

part-of and is-a relationships is to allow mediators to detect schema-level conflicts between

schemas.

Definition 5. RM in Λ is a relation on OI and called a domain value mapping relationship (or,

briefly, a mapping relationship). The dotted vertical lines across parenthood relationships between

instances depicted in Fig. 1 represent mapping relationships. By definition, RM can occur only

between instances, but not between concepts. Another property of RM is that all instances

belonging to a concept may be regarded as synonyms of their parent concept. This is the case

where instances have different names for the same concept. Similarly, if two instances have the

same name but belong to different concepts, they are homonyms. Note that all mapping

relationships described below are derived from functional mappings in set theory. The mapping

relationships are used by mediators to determine whether the actual data values that are mapped to

instances can be transformed from one value to another and vice versa. RM consists of one-one,

one-many, many-many, or none. In addition, total and partial mappings are used in combination of

one, one-many, and many-many relationships to indicate whether every value in one instance has

the corresponding value in other instances. The corresponding notation and description of each

mapping relationship is presented in Table 1.

Definition 6. u is the root of Λ. The root u has no parent: there is no x ∈ OC such that RP(x,

u). By definition, there is exactly one u in Λ.

4 Implementation of SCROL

We have implemented software environm

Autonomous Mediation). CREAM can be

Web-based graphical user interface [26].

as Schema Designer, Schema Mapper,

Mediators, which enable the automatio

interaction with SCROL. Details about t

can be found in [26]. SCROL constitute

Java using Oracle 8i as a repository. In th

of the entire process of instantiating SCRO

4.1 Step 1: Defining SCROL using On

The Ontology Designer is a major comp

define various concepts, instances, and th

types of semantic conflicts in SCROL. S

in a set of tables owned by SCROL. A

ontology design. Remember that SCROL

is a one time effort and the resulting ontolo

Notation of

Mapping Relat
 total one-one
 total one-many
 total many-one
 total many-man
 Partial one-one
 Partial one-man
 Partial many-on
 Partial many-m
 None

Table 1
 Mapping Relationships

ionship Notation
x y
x y
x y

y x y
x y

y x y
e x y
any x y

x y
15

ent called CREAM (Conflict Resolution Environment for

 used to model and access heterogeneous databases via a

CREAM provides various collaborative components, such

Ontology Designer, Ontology Mapper, and Semantic

n of conflict detection and resolution through their

he integrated environment, CREAM, and its components

s a central part of CREAM. It has been implemented in

e following subsections, we shall begin with a summary

L using our CREAM system.

tology Designer

onent of CREAM, which helps database administrators

eir relationships by describing and classifying different

uch concepts, instances, and their relationships are stored

built-in integrity checker also prevents errors during the

 is domain independent. Hence, the definition of SCROL

gy can essentially be used repeatedly in many application

 16

domains. SCROL needs to be extended only if the database administrator discovers that there is a

brand new type of a semantic conflict that was previously undefined in SCROL.

In order to make the contents of SCROL as general as possible and to enable them to be

widely reused by a broad range of different application domains, the concepts represented in

SCROL are neither data or application-driven nor are they domain specific. Since the main

objective of our ontology is to facilitate detection and identification of various semantic and

schematic conflicts, our ontology, unlike the Cyc project [18], is not intended to accumulate a

massive knowledge base of human consensus knowledge. This goal enables us to develop a very

simple yet flexible ontology. In fact, most currently existing ontologies cannot identify and

accurately classify semantic conflicts [23]. Since the discovery and reconciliation of semantic

conflicts necessitate the ability to classify these conflicts, we construct SCROL based on a

comprehensive classification framework of semantic conflicts [30]. This classification framework

is based on extensive field study and investigation of various real geographic datasets (i.e., US

Geological Survey data, vegetation data, land use data, etc.) containing several millions of records.

We have rigorously defined additional types of semantic conflicts that are regularly encountered in

geographic databases. We also tested each type of semantic conflict using these datasets to examine

the extent to which CREAM automates the semantic conflict resolution process (see Section 5.2).

The classification framework characterizes semantic conflicts at two different levels, i.e., data and

schema level conflicts, each having six types of semantic conflicts. In most instances, data-level

conflicts are differences in data domains caused by the multiple representations and interpretations

of similar data. Schema-level conflicts are, on the other hand, characterized by differences in

logical structures and/or inconsistencies in metadata (i.e., schemas) of the same application domain.

A more detailed description of the classification framework is found in [30]. Using the Ontology

Designer, we defined SCROL to capture all the types of conflicts represented in Tables 2 and 3.

 17

Table 2
Data Level Conflicts

Conflict Description
Data value conflict Different interpretations of the “meaning” of data instance values
Data representation
conflict

Similar objects are described by different data types or data format
representations

Data unit conflict Use of different measurement units
Data precision conflict Implementation of different scales, different domain precision, or different data

granularities and resolutions
Known data value
reliability conflicts

Data present in different databases may be subject to data reliability
(i.e.,measurement of error, measuring instruments, precision of
measurements, topological properties, and treatment of time dimension)

Spatial domain conflict Specifications of geographic regions or objects are “differently” but “legally”
defined by different people

Table 3

Schema Level Conflicts
Conflict Description
Naming conflict Labels of schema elements (i.e., entity classes, relationships, and attributes)

are somewhat arbitrarily assigned by different database designers
(homonyms and synonyms)

Entity identifier conflicts Assignment of different identifiers (primary keys) to the same concept in
different databases

Schema isomorphism
conflicts

Same concept (entity class) is described by a dissimilar set of attributes (i.e.,
the same concept is represented by a number of different attributes) or is not
set operation compatible

Generalization conflicts Different design choices for modeling related entity classes
Aggregation conflicts When an aggregation is used in one database to identify a set of entities in

another database
Schematic discrepancies When the logical structure of a set of attributes and their values belonging to

an entity class in one database are organized to form a different structure in
another database

The various data level and schema level conflicts are encoded as the first level children

concepts within SCROL’s tree. For example, Fig. 4 shows the various data level conflicts that are

encoded within SCROL. Due to space limitations, only the data unit conflict within the data level

conflicts are expanded. All other types of conflicts are also encoded as children concepts and

instances of these concepts to represent the various semantic conflicts that may arise in the domain

of the heterogeneous databases. This common ontology is then mapped to the individual local

schemas and also to the federated schema so that each type of semantic conflict may be detected as

needed.

4.2 Step 2

In order to d

conflict cont

has child co

related obje

semantic rec

The origina

component t

represents th

from local d

From t

mapping rel

... Data Unit
Conflict

Root

Known Data Value
ReliabilityConflict

Spatial Domain
Conflict

Data Value
Conflict

Data Precision
Conflict

Data Representation
Conflict

...
...

...
...

...

 Descriptive Location Coordinate

Geographical Location

 Scale

100 101 102 103

 Street
Address

10-1 10-2 10-3

 UTM

 Zip Code String Code

 Spatial
Resolution

 Geometric Objects

 1-Dimension
 2-Dimension 3-Dimension

 Point Line Polygon Area Volume Sphere

disjoint

disjoint

part-of
peer

Geo-Coding

Parcel-Coding

Minor NumberMajor Number

disjoint
disjoint

 Region

Continent

State/Providence
Country County

 Urban Area

Rural Area

 City Town
 Suburban

 part-of disjoint

 part-of part-of part-of
part-of

Fig. 4. Data Precision Conflicts in SCROL
18

: Defining Conflict Controller, Original Context, and Target Context

etect a certain semantic conflict, three pieces of information are needed from SCROL: a

roller, an original context, and a target context. The conflict controller is a concept that

ncepts or instances. Each of these represents multiple interpretations of semantically

cts. Each conflict controller has a corresponding semantic resolver that handles

onciliation between the conflict controller’s child concepts or instances (see Fig. 5).

l context is a concept or an instance that has been mapped to the local schema

o represent the specific context of the local schema component. The target context

e resulting context in which the user wants to transform the meanings of data values

atabases.

he previous example, a concept Area has two instances Square Meter and Acre, and the

ationship between the two instances is total one-one. Thus, any data value mapped to

 19

Square Meter can be converted to the corresponding value in Acre and vice versa. As illustrated in

Fig. 5, the instance Square Meter is called original context of COUNTY_AREA.area, because the

attribute area is mapped to the instance Square Meter and actual data values stored in the area are

represented in square meter (m2). Similarly, the instance Acre is also called original context of the

attribute gross_size in CITY-SIZE. The parent concept of Square Meter and Acre (i.e., Area) is

referred to as a conflict controller, which is mapped to REGION.area in the federated schema.

When a user retrieves data sources mapped to Square Meter and wants to convert his output to

Acre, the instance Acre becomes a target context. In this particular case, the conflict controller,

Area, has the corresponding semantic resolver that contains two simple conversion rules, one

converting values from square meter to acre and the other converting values from acre to square

meter. The semantic resolver then captures conflict resolution knowledge about how to transform

data values from COUNTY_AREA.area, which is originally in square meter, to values in acre (i.e.,

1 acre = 4047 square meters). If a new instance (e.g., Square Feet) is added to the concept (e.g.,

Area) later, a domain expert creates associated new semantic transformation rules and encodes such

City_Size County_Area

Region

name
gross_size map name area image

name
area map

Federated Schema

County SchemaCity Schema

Area

Square MeterAcre SCROL

Original Context Conflict Controller

Target Context

Fig. 5. Conflict Controller, Original Context and Target Context

 20

rules into the appropriate semantic resolver.

4.3 Step 3: Defining Ontology Relationship and Mapping Knowledge

In order to determine whether two terms are semantically related and, if they are related, to what

extent one can be translated to another, it is necessary to explicitly describe the relationship between

SCROL components. Thus, the next step requires the construction of the ontology relationship

knowledge defined as follows:

Definition 7. Let ORK be the ontology relationship knowledge. ORK is defined as a relation

on σ × σ × λ, where σ ∈ OC ∪ OI in Λ and λ ∈ RS ∪ RM in Λ (see Definitions 1, 2, 3, 4 and 5). It

is given by ORK ⊆ σ × σ × λ. Note that ORK is derived from RS and RM.

According to Fig. 6, Acre and Square Meter are specific instances of concept Area in SCROL,

and these two instances have a total one-one mapping because every value in Acre is associated

with exactly one value on in Square Meter and vice versa. In this example, the ontology

relationship knowledge can be expressed as:

ORK = { (‘Square Meter’, ‘Acre’,), (‘City’, ‘County’, part-of)}

City_Size County_Area

Region

name
gross_size map name area image

name
area map

Federated Schema

County SchemaCity Schema

Area

Square MeterAcre

SCROL

total one-one

Region

CountyCity

part-of

Fig. 6. An Example of Ontology Mappings

 21

After the construction of ORK, the next step is to establish mapping knowledge between

SCROL and federated/local schemas. Contextual knowledge in a database component is captured

via mappings between SCROL and the schema of the component. Therefore, the ontology mapping

knowledge is defined as follows:

Definition 8. Let OMK be the ontology mapping knowledge. OMK is a set of mappings

between schema (both federated and local schemas) and SCROL. OMK is, therefore, defined as a

relation on SCROL × (FS ∪ LS) and given by OMK ⊆ SCROL × (FS ∪ LS), where FS is a

federated schema and LS is a set of participating local schemas.

For example, as Fig. 6 illustrates, CITY_SIZE.gross_size is mapped to an instance Acre,

which specifies that the measurement unit of CITY_SIZE.gross_size is acre. On the other hand,

COUNTY_AREA.area is mapped to Square Meter, which indicates that the measurement unit of

COUNTY_AREA.area is square meter. By looking at the given ontology mapping knowledge, the

system is able to detect the fact that the two attributes are represented in different measurement

units. Also note that REGION.area in the federated schema is mapped to concept Area. This

particular mapping knowledge indicates that REGION.area is a conflict controller and, thus, its

measurement unit could be either acre or square meter. It allows the user to select his or her target

context (either acre or square meter in this case), which is the resulting context in which the user

wants to view the retrieved data. The ontology mapping knowledge can be established at any level

(e.g., attribute, entity, or relationship level). At each level, either a concept or instance in SCROL is

mapped to a schema component. For example, the entity CITY_SIZE is mapped to concept City

and the entity COUNTY_AREA is mapped to concept County, where the City is part-of Country.

The established mappings are stored in the ontology-mapping repository. The ontology mapping

knowledge can be explicitly represented in the following form:

 22

OMK = { (‘Area’, REGION.area), (‘Acre’, CITY_SIZE.gross_size), (‘Square Meter’,
COUNTY_AREA.area), (‘Region’, REGION), (‘City’, CITY_SIZE), (‘County’,
COUNTY_AREA) }

5 Application and Evaluation of SCROL

In this section, we describe how SCROL is used to detect and resolve a variety of data and schema

conflicts. Due to the space limitations, only one example of a data-level conflict and one example

of a schema-level conflict is described in detail. We also summarize the result of a detailed

evaluation.

5.1 Illustrative Examples to Demonstrate Application of SCROL

5.1.1 Data Level Conflicts

As an example, two heterogeneous databases from the land-use heterogeneous databases case are

introduced in Fig. 7. They contain information on land parcels and buildings. Note that Fig. 7

displays only the attributes and entities that are necessary to explain data precision conflicts.

However, schema mappings that are already established between the federated schema and two

local schemas are not shown in Fig. 7 due to limited space. LAND_PARCEL.temperature in local

schema 1 and LAND_PARCEL.avg_temperature in local schema 2 are semantically equivalent, and

both are mapped to LAND_PARCEL.avg_temperature in the federated schema. Similarly,

CI_BUILDING.gross_area and RES_BUILDING.area_in_square_feet in local schema 1 and

CI_BUILDING.gross_area_ci and RES_BUILDING.total_housing_unit_area_rb in local schema 2

are mapped to CI_BUILDING.gross_area and RES_BUILDING.area_in_square_feet in the

federated schema, respectively.

There are three data unit conflicts in this example:

• The measurement unit of LAND_PARCEL.temperature in local schema 1 is Celsius,

whereas the unit of LAND_PARCEL.avg_temperature in local schema 2 is Fahrenheit.

 23

• CI_BUILDING.gross_area in local schema 1 is in acres, while CI_BUILDING.

gross_area_ci in local schema 2 is in square feet.

• RES_BUILDING.area_in_square_feet in local schema 1 is in square feet, whereas

RES_BUILDING.total_housing_unit_area_rb in local schema 2 is in square meters.

As depicted in Fig. 7, these conflicts are identified by ontology mappings. In SCROL, Area

and Temperature are conflict controllers, and they have a disjoint relationship between each other.

Recall that the disjoint relationship between two concepts indicates that they are not semantically

equivalent. Acre, Square Feet, and Square Meter have total one-one mapping relationships because

their data values can be transformed from one to another without losing their meanings. Similarly,

Celsius and Fahrenheit have a total one-one mapping relationship.

Based on the ontology mapping of the local schemas to SCROL, we may readily recognize

data unit conflicts since each of the local schemas have attributes distinctly mapped to different

instances of a concept. For instance, Land_Parcel.Temperature in local schema 1 is mapped to the

Celsius instance of the Temperature concept, whereas Land_Parcel.Avg_Temperature in local

schema 2 is mapped to the Fahrenheit instance of the same concept. After the initial detection of

the semantic conflict, the appropriate transformation rule may be used to resolve the conflict and

Local Schema 2Local Schema 1

Temperature

Gross Area Area_in_Square Feet

 Land Parcel

 Res_Land Parcel CI_Land Parcel

CI_Building Res_Building

Federated Schema

Area_in_Square_FeetGross_Area

Avg_Temperature

Data Unit
Conflict

Area

Square
MeterAcre Squrae

Feet

SCROL

CI_Building Res_Building

Building

Land_Parcel

CI_Land_Parcel Res_Land_Parcel

Temperature

FahrenheitCelsius

Gross_Area_CI

Avg_Temperature

Res_Building CI_Building

Building

Land_Parcel

Total Housing Unit Area - RB

S

S

S

S

Fig. 7. An Example of Data Unit Conflicts

 24

convert the data values to any one of the data units captured in SCROL that represents the same

concept. For example, if the user queries LAND_PARCEL.avg_temperature from the federated

schema, the two conflicting contexts (i.e., Celsius and Fahrenheit) are recognized from the conflict

controller, Temperature, and the user is asked to specify his or her target context. If the user wants

to view the data in Celsius from the underlying two local databases, the user can select Celsius as a

target context. For the local schema 1, no semantic reconciliation process is required because the

original and target contexts are identical. On the other hand, the original and target contexts of

LAND_PARCEL.avg_temperature in schema 2 are different. Therefore, each data value retrieved

from local schema 2 is converted to data value in Celsius according to the transformation rules and

then the resulting data retrieved from both local schemas are presented to the user. The other two

conflicts can also be detected easily and resolved in a similar way.

5.1.2 Schema Level Conflicts

Consider the three different databases representing information about taxes shown in Fig. 8. All

describe the sum of collected tax amounts (in thousands) of different taxes each year for a particular

county. In local schema 1, REAL_PROPERTY stores one tuple per year per tax type

(REAL_PROPERTY.tax_type) with amount of tax paid. TAX_AMOUNT in local schema 2

contains one tuple per year, and one attribute for each tax type (TAX_AMOUNT.

surface_water_bill and TAX_AMOUNT.property_tax), where the value of the attribute is the tax

amount paid. Local schema 3, in contrast, has one relation for each tax (SURFACE_WATER_

BILL and PROPERTY_TAX) and each relation has one tuple per year with its tax amount paid

(SURFACE_WATER_BILL.amount and PROPERTY_TAX.amount). Hence, this situation is a

typical schema discrepancy conflict.

As shown in Fig. 8, these conflicts are identified by ontology mappings. Note that the

ontology mapping for the attribute, tax_type, in local schema 1 is defined as mapping-by-value

because each tuple value itself is a tax type; that is, either “property tax” or “surface water bill.”

During the semantic reconciliation, the Conflict Resolver determines the tax type in the local

schema 1 by looking at each data value stored in the REAL_PROPERTY.tax_type and then assigns

each data value captured in the REAL_PROPERTY.tax_amount into the corresponding attribute in

the federated schema. In the case of local schema 3, the name of each tax type is the name of an

entity class. SURFACE_WATER_BILL.amount is mapped to Surface_Water_Bill and

PROPERTY_TAX.amount is mapped to Property_Tax in SCROL. Thus, if the user queries tax

amounts of surface water bills through REAL_PROPERTY.surface_water_bill from the federated

schema, then only data from SURFACE_WATER_BILL.amount in local schema 3 is retrieved.

5.2 Evaluation of SCROL

We tested SCROL using three different cases, each of which represents a different application

domain. The first case, called “land-use heterogeneous databases,” involved three heterogeneous

databases used in land-use applications. These databases were developed to store information about

Tax Type

Property Tax Surface Water Bill

TAX_
AMOUNT

property_tax

Local Schema 2

Federated Schema

surface_water_bill

REAL_
PROPERTY

tax_type

Local Schema 1

REAL_
PROPERTY

property_tax

surface_water_bill
By Value

SURFACE_
WATER_BILL

amount

PROPERTY_
TAX

amount

Local Schema 3

SCROL

tax_bill

Fig. 8. An Example of Schematic Discrepancies
25

 26

buildings constructed in residential or commercial/industrial areas. We adopted the heterogeneous

database schemas originally described in [22] and modified and expanded them to include as many

semantic conflicts as possible. The second case, “ecology heterogeneous databases,” involved a set

of databases used by ecologists for ecological system analysis at a large research organization. It

consisted of three databases designed for different purposes. The first captured soil-related

information; the second was designed for fire simulation, while the third was used to capture

vegetation and different water types. The third case, called “publication databases,” involved two

databases for publications, each of which was independently developed by researchers and

librarians. The two database schemas were originally used by [1] to demonstrate schema

integration methodology. We modified and extended the two schemas to evaluate and demonstrate

the performance of our system.

The first two cases are categorized as being in the geographic database domain, while the

third deals with non-geographic databases. The two geographic database cases were selected

because temporal and spatial dimensions of geographic data objects are frequent and significant

sources of semantic conflicts that lead to multiple interpretations [23]. Finally, the publication case

was also selected in order to validate the effectiveness of SCROL in a non-geographic domain. We

selected the specific cases from among many other databases because the three cases were

representative of commonly used geographic and non-geographic databases and the three cases,

combined, contained all of the different types of semantic conflicts in the classification framework

of semantic conflicts described in Section 4.1. The initial construction of SCROL consists of about

120 concepts and 160 instances. Fig. 9 shows the initial construction of SCROL in zoom-out mode.

All the local schemas and federated schemas for all three cases were then mapped to SCROL.

Three different cases consisting of 123 relations and 434 attributes were tested to evaluate

SCROL. Among the total of the 557 database components (i.e., the sum of 123 relations and 434

 27

attributes) used during the evaluation phase, 201 components involved semantic conflicts. The 201

heterogeneous components caused 68 conflicts: 24 data-level conflicts and 44 schema-level

conflicts. Table 4 shows a summary of the results obtained from the three cases.

All of the conflicts found at the data level except for “known data value reliability” and

“spatial domain conflicts” were resolved by the semantic mediators using SCROL and ontology

mapping knowledge. Known data value reliability conflicts cannot be resolved semantically

because they are not the cause of multiple interpretations of the same data, i.e., semantic

heterogeneity. The differences in data source reliability are generally due to the use of different

measuring instruments, which affect the precision and accuracy of data being collected. Spatial

Fig. 9. Initial Construction of SCROL in Zoom-out Mode

 28

domain conflicts are also not easily resolved by the semantic mediators, since differences in spatial

domain specifications are legally defined by different people who have different needs in different

application domains. However, as long as source database schemas are properly mapped to the

matching ontology components and these conflicts can be classified in SCROL, the semantic

mediators can automatically detect differences between them and provide a partial solution by

notifying the user which information sources have conflicts. Unlike data-level semantic conflicts,

semantic reconciliation of some schema-level conflicts requires both SCROL and schema mapping

knowledge. Schema mapping knowledge contains all details about local schema structures [26].

The result also shows that both schema mapping knowledge and ontology mapping knowledge play

important roles as knowledge sources for semantic mediators during global query processing.

Detailed analyses of the test results can be found in [25]. In conclusion, SCROL plays a pivotal

role in our proposed approach. To overcome the limitations of the traditional federated approach

(e.g., lack of semantic-richness and flexibility) and the ontology-based domain model approach (e.g.,

Table 4
Summary of Semantic Conflicts Resulting from the Three Cases

Conflict Type Number of
Conflicts Found

Number of
Conflict Resolved

Data Value 2 2

Data Representation 5 5

Data Unit 6 6

Data Precision 4 4

Known Data Value Reliability 6 0*

D
at

a-
Le

ve
l C

on
fli

ct
s

Spatial Domain 1 0*

Naming 20 20

Entity Identifier 2 2

Schema Isomorphism 7 7

Generalization 3 3

Aggregation 6 6

S
ch

em
a-

Le
ve

l C
on

fli
ct

s

Schematic Discrepancies 6 6

* only partially supported

 29

complexity), we presented a crossbreed approach that provides enough semantic richness to detect

and resolve semantic conflicts while maintaining a much simpler ontology.

6 Contributions and Comparison with Other Approaches

Our major contributions are that SCROL is a domain independent ontology with a simple structure.

However, it is powerful enough to identify and resolve a large number of different types of semantic

conflicts as explained in the earlier sections.

Our approach is different from the ontology-based domain model approach. The domain

model approach attempts to resolve semantic heterogeneity by leveraging the richness of domain

knowledge. The purpose of using ontologies is to represent knowledge about a target application

domain. It is, however, very difficult to construct and manage a domain model because a domain

model is much more complex than a conventional shared schema. A domain model requires

capturing tacit knowledge within a certain domain in great detail in order to clarify meaning of each

data object. To release this burden, many researchers in the AI community have made efforts on

knowledge sharing and reusability [27]. Along with these endeavors, the need of ontology

standardization has been addressed. To date, however, there is no formal agreement on these

efforts. Furthermore, this approach requires a significant amount of reasoning with a domain model

whenever it attempts to resolve even a simple semantic conflict because the model itself is

inherently complex. We believe, however, that a domain model does not need to be complex if its

purpose is only to detect and resolve semantic conflicts. This can be accomplished by avoiding

integration of all tacit knowledge relevant to a particular domain application.

The Context Interchange (COIN) uses a domain model [8]. A domain model in COIN is a

collection of primitive types and semantic types (similar to type in the object-oriented paradigm),

which defines the application domain corresponding to the data sources that are to be integrated.

Each type in a domain model binds a specific context (“semantic value”) that is provided by local

 30

data sources when a query occurs. The data value is exchanged from one system to another by

converting the semantic value from its source context to its receiving context through a “context

mediator.” The context mediator takes control of all requests for data from the receiver (i.e.,

application), then translates the query to the source context, executes the query in the source

database, and finally converts the data into the receiver’s context. Conversion functions are used to

convert semantic values from one context to another. The context information can be obtained by

examining the data environment of each data source. A data environment specifies the context of

data values and may involve mappings, lookup tables, rules, predicates, or other knowledge

representations. A domain model (i.e., shared-ontology) specifies terminology mappings. These

mappings describe naming equivalencies among the component information systems, so that

references to attributes, meta-attributes, and their values in one information system can be translated

to the equivalent names in another. This approach, however, focuses solely on the semantics of

individual data items, i.e., data-level conflicts. Since the context information is represented at the

level of data values, the context mediation proposed in this approach is not able to resolve semantic

conflicts at the schema level. In conclusion, this work, as indicated in Goh et al. [8], complements

rather than competes with the existing domain model approach.

While the ontology-based domain model approach suffers from its complexity, the other two

popular approaches to heterogeneous database integration, the global schema and the federated

schema approach, lack semantic-richness and flexibility [32]. In the global schema approach, each

local database schema is combined into a single integrated schema [2]. It is an integration of

component database systems that may not be autonomous. A federated approach, on the other hand,

assumes a collection of cooperating but autonomous component database systems [36]. In the

federated approach, each local database exports a portion of its schema that it is willing to share

with other databases [7]. Each database can then use these export schemas to define an import

 31

schema, a partial global schema representing information from remote databases that is accessible

locally.

In the federated approach, two methodologies have been proposed: the tightly coupled

approach and the loosely coupled approach [36]. The distinction is based on who manages the

federation and how the component databases are integrated. In the loosely coupled approach, a

federation is created and managed by the user and there is no centralized control over the system.

Users can directly interact with local databases instead of being restricted to querying federated

schemas. One of the main drawbacks of this approach is that it places too heavy a burden on users

by requiring them to understand the underlying local databases and provides little or no support for

identifying semantic conflicts [9]. This approach typically requires users to engage in the detection

and resolution of semantic conflicts. Consequently, users are also responsible for semantic conflict

resolution. A federated system is tightly coupled if the federation is created and maintained by

administrators, not by users. One or more federated schemas are constructed from the schemas of

the participating local databases. In most cases, the schemas of the local databases (called

“component databases”) are heterogeneous. This approach provides uniform and integrated access

to the underlying local databases, because the federated schema serves as a front-end system that

supports a canonical data model (common model) and a single global query language on top of

these local database systems. In this approach, semantic conflicts must be identified and resolved a

priori by the administrators.

Both approaches are traditional and many researchers have identified a scalability problem in

these approaches [8, 33]. The tightly coupled approach is decent in that it supports well-integrated

data access to distributed, heterogeneous databases because this approach relies on a highly

integrated shared schema. However, it is very difficult to construct and maintain a federated

schema that represents all of the participating data sources without any semantic conflicts. The

 32

loosely coupled approach is reasonable in that it requires little central administration. In other

words, it is the user who creates and maintains a federated schema. However, due to the

decentralization, users must have knowledge on the data sources to resolve the potential conflicts.

Human users must be engaged in detecting and resolving conflicts.

Our paper presents a hybrid approach by addressing the limitations of these approaches.

While achieving enough semantic richness to detect and resolve semantic conflicts, our approach

successfully retains SCROL at a lower level of complexity. We have a federated schema, but our

approach requires only a reasonable amount of schema integration effort because semantic conflicts

do not have to be identified and resolved a priori by a centralized administrator. The specific

context of each data object in the schema is identified through mappings to the extendable, domain

independent ontology, and the local database administrators and domain experts are responsible for

encoding semantic conflict classification knowledge. Furthermore, SCROL was not designed to

represent domain knowledge; thus, it does not have to be complex.

7 Conclusion and Future Research

We have presented details of an ontology called SCROL in this paper. SCROL can be used to

identify and resolve semantic conflicts among multiple heterogeneous databases. We have also

presented results an evaluation of SCROL to show how it comprehensively identifies and resolves

many different types of conflicts.

There are several interesting extensions, which we are currently exploring. The research

presented in this paper assumes that the underlying information sources are structured data that may

reside in the structurally organized text files or database systems. However, the unprecedented

growth of Internet technologies has made vast amounts of resources instantly accessible to various

users via the World Wide Web (WWW). The majority of data available on the Internet are semi-

structured or unstructured, consisting of multimedia data such as audio, video, and image files as

 33

well as textual documents such as Hypertext Markup Language (HTML). Whereas HTML is semi-

structured and designed only to present information to human users, the promising Extensible

Markup Language (XML) technology provides a highly structured format that can be processed by

machines on the Internet. However, it is still required to capture context knowledge on the meaning

of each tag for semantic interoperability among heterogeneous XML formats. We are currently

investigating XML as a standard method for exchanging various knowledge captured in SCROL

with other systems on the Internet.

We are also extending our work to semantic interoperability in digital libraries. A digital

library is a networked system environment where individual components interact to allow users to

submit and access digital content. Among many issues and research directions in digital libraries

identified by Ram et al. [31], ensuring interoperability and knowledge-based information sharing is

one of the key aspects of successful implementation of digital libraries. Mediator/agent-based

business transactions on the Internet (i.e., electronic commerce, or EC) is another interesting

extension of the current research. In the multi-agent systems (MAS) environment, it is natural to

deal with heterogeneous agents that attempt to communicate with one another in different agent

communication languages (ACL). Since each ACL is differentiated from others in terms of its

syntax as well as semantics (e.g., FIPA-ACL and KQML), the interoperability issue in this area

becomes interesting. We propose to extend these issues as an important direction for extending the

research described in this paper.

References
[1] C. Batini and M. Lenzerini, "A Methodology for Data Schema Integration in the Entity Relationship Model,"

IEEE Trans. Softw. Eng., vol. SE-10, no. 8, 1984, pp. 650-664.

[2] C. Batini, M. Lenzerini, and S.B. Navathe, "A Comparative Analysis of Methodologies for Database Schema
Integration," ACM Comp. Surveys, vol. 18, no. 4, 1986, pp. 323-364.

[3] C. Collet, M.N. Huhns, and W.-M. Shen, "Resource Integration Using a Large Knowledge Base in Carnot," IEEE
Computer, vol. 24, no. 12, 1991, pp. 55-62.

 34

[4] B. Czejdo, M. Rusinkiewics, and D.W. Embley, "An Approach to Schema Integration and Query Formulation in
Federated Database Systems," in Proceedings of Int. Conf. Data Eng., Los Angeles, CA, 1987, IEEE Computer
Society Press, pp. 477-484.

[5] S. Dao and B. Perry, "Applying a Data Miner to Heterogeneous Schema Integration," in Proceedings of
International Conference on Knowledge Discovery and Data Mining, Montreal Quebec, Canada, 1995, AAAI
Press, pp. 63-68.

[6] M.L. Dowell, L.M. Steohens, and R.D. Bonnell, "Using a Domain-Knowledge Ontology as a Semantic Gateway
among Information Resources," in Machael N. Huhns and Munindar P. Singh, ed., Readings in Agents, San
Francisco: Morgan Kaufman, 1998, pp. 255-260.

[7] D. Fang, J. Hammer, and D. McLeod, "The Identification and Resolution of Semantic Heterogeneity in
Multidatabase Systems," in Proceedings of IMS, Kyoto, Japan, 1991, pp. 136–143.

[8] C.H. Goh, S. Bressan, S.E. Madnick, and M.D. Siegel, "Context Interchange: New Features and Formalisms for
the Intelligent Integration of Information," ACM Transactions on Information Systems, vol. 17, no. 3, 1999, pp.
270-293.

[9] C.H. Goh, S.E. Madnick, and M.D. Siegel, "Context Interchange: Overcoming the Challenges of Large-Scale
Interoperable Database Systems in a Dynamic Environment," in Proceedings of CIKM, Gaithersburg, Maryland,
1994, pp. 337-346.

[10] T.R. Gruber, "The Role of Common Ontology in Achieving Sharable, Resuable Knowlege Bases," in Proceedings
of KR, 1991, pp. 601-602.

[11] T.R. Gruber, Toward Principles for the Design of Ontologies Used for Knowledge Sharing, Technical Report KSL
93-04, Knowledge Systems Laboratory, Stanford University, August 23 1993.

[12] T.R. Gruber, "A Translation Approach to Portable Ontology Specifications," Knowledge Acquisition, vol. 5, no. 2,
1993, pp. 199-220.

[13] M.N. Huhns and M.P. Singh, "Managing Heterogeneous Transaction Workflows with Co-operating Agents," in
Nicholas R. Jennings and Michael J. Wooldridge, ed., Agent Technology: Foundations, Applications, and
Markets, Berlin: Springer, 1998, pp. 219-239.

[14] J. Kahng and D. McLeod, "Dynamic Classificational Ontologies: Mediation of Information Sharing in
Cooperative Federated Database Systems," in Michael P. Papazoglou and Gunter Sohlageter, ed., Cooperative
Information Systems: Trends and Directions, San Diego: Academic Press, 1998, pp. 179-203.

[15] V. Kashyap and A.P. Sheth, Semantic and Schematic Similarities Between Objects in Databases: A Context-Based
Approach, Technical Report TR-CS-95-001, Department of Computer Science, The University of Georgia,
February 16 1995.

[16] V. Kashyap and A.P. Sheth, "Semantic and Schematic Similarities Between Database Objects: A Context-based
Approach," The VLDB Journal, vol. 5, no. 4, 1996, pp. 276-304.

[17] D.B. Lenat, "CYC: A Large-Scale Investment in Knowledge Infrastructure," Comm. ACM, vol. 38, no. 11, 1995,
pp. 33-38.

[18] D.B. Lenat, R.V. Guha, K. Pittman, D. Pratt, and M. Shepherd, "CYC: Toward Programs with Common Sense,"
Comm. ACM, vol. 33, no. 8, 1990, pp. 30-49.

[19] R. MacGregor, "The Evolving Technology of Classification-Based Knowledge Representation Systems," in John
F. Sowa, ed., Principles of Semantic Networks: Explorations in the Representation of Knowledge, San Mateo:
Morgan Kaufmann, 1991, pp. 385-400.

[20] K. Mahalingam and M.N. Huhns, "An Ontology Tool for Query Formulation in an Agent-Based Context," in
Proceedings of IFCIS International Conference on Cooperative Information Systems, Kiawah Island, South
Carolina, 1997

[21] K. Mahesh and S. Nirenburg, "A Situated Ontology for Practical NLP," in Proceedings of IJCAI-95 Workshop on
Basic Ontological Issues in Knowledge Sharing, Montreal, Canada, 1995

[22] T.L. Nyerges, "Schema Integration Analysis for the Development of GIS Databases," Int. J. Geographical Info.
Sys., vol. 3, no. 2, 1989, pp. 153-183.

 35

[23] A.M. Ouksel, "A Framework for a Scalable Agent Architecture of Cooperating Heterogeneous Knowledge
Sources," in M Klusch, ed., Intelligent Information Agents: Agent-Based Information Discovery and Management
on the Internet, Berlin: Springer, 1999, pp. 100-124.

[24] A.M. Ouksel and C.F. Naiman, "Coordinating Context Building in Heterogeneous Information Systems," J. of
Intelligent Information Systems, vol. 3, no. 2, 1994, pp. 151-183.

[25] J. Park, Facilitating Interoperability among Heterogeneous Geographic Database Systems: A Theoretical
Framework, A Prototype System, and Evaluation, Dissertation, The University of Arizona, 1999.

[26] J. Park and S. Ram, "A Conflict Resolution Environment for Autonomous Mediation Among Heterogeneous
Databases," Technical Report 01-04-1, University of Minnesota, April 2001.

[27] R.S. Patil, R.E. Fikes, P.F. Patel-Schneider, D. McKay, T. Finin, T. Gruber, and R. Neches, "The DARPA
Knowledge Sharing Effort: Progress Report," in Proceedings of KR, Cambridge, MA, 1992, Margan Kaufmann,
pp. 777-788.

[28] J.-C.R. Pazzaglia and S.M. Embury, "Bottom-up Integration of Ontologies in a Database Context," in Proceedings
of KRDB Workshop, Seattle, WA, 1998

[29] S. Ram, J. Park, and G. Ball, "Semantic Model Support for Geographic Information Systems," IEEE Computer,
vol. 32, no. 5, 1999, pp. 74-81.

[30] S. Ram, J. Park, K. Kim, and Y. Hwang, "A Comprehensive Framework for Classifying Data- and Schema-Level
Semantic Conflicts in Geographic and Non-Geographic Databases," in Proceedings of WITS, Charlotte, North
Carolina, 1999, pp. 185-190.

[31] S. Ram, J. Park, and D. Lee, "Digital Libraries for the Next Millenium: Challenges and Research Directions," ISF,
vol. 1, no. 1, 1999, pp. 75-94.

[32] S. Ram and V. Ramesh, "Schema Integration: Past, Current and Future," in A. Elmagarmid, M. Rusinkeiwicz, and
Amit P. Sheth, ed., Management of Heterogeneous and Autonomous Database Systems, San Francisco: Morgan
Kaufmann, 1999, pp. 119-155.

[33] V. Ramesh, K. Canfield, S. Quirologico, and M. Silva, "An Intelligent Agent-based Architecture for
Interoperability among Heterogeneous Medical Databases," in Proceedings of Americas Conference on
Information Systems, Phoenix, Arizona, 1996, pp. 549-551.

[34] J. Roitman, Introduction to Modern Set Theory, New York: John Wiley & Sons, 1990.

[35] A.P. Sheth, "Semantic Issues in Multidatabase Systems," SIGMOD Record, vol. 40, no. 4, 1991, pp. 5-9.

[36] A.P. Sheth and J.A. Larson, "Federated Database Systems for Managing Distributed, Heterogeneous, and
Autonomous Databases," ACM Comp. Surveys, vol. 22, no. 3, 1990, pp. 184-236.

[37] M. Siegel, S. Madnick, and E. Sciore, "Context Interchange in a Client-Server Architecture," J. Systems Software,
vol. 27, no. 3, 1994, pp. 223-232.

[38] V.C. Storey, R.H.L. Chiang, D. Dey, R.C. Goldstein, and S. Sundaresan, "Database Design with Common Sense
Business Reasoning and Learning," ACM Trans. Database Syst., vol. 22, no. 4, 1997, pp. 471-512.

[39] H. Takeda, K. Iwata, M. Takaai, A. Sawada, and T. Nishida, "An Ontology-Based Cooperative Environment for
Real World Agents," in Proceedings of ICMAS, Kyoto, Japan, 1996, MIT Press, pp. 353-360.

[40] P.E. van der Vet and N.J.I. Mars, "Bottom-Up Construction of Ontologies," IEEE TKDE, vol. 10, no. 4, 1998, pp.
513-526.

[41] V. Ventrone and S. Heiler, "Semantic Heterogeneity as a Result of Domain Evolution," SIGMOD Record, vol. 20,
no. 4, 1991, pp. 16-20.

	Introduction
	Need for a Common Ontology to Facilitate Semantic Interoperability
	SCROL Constructs and Definitions
	Implementation of SCROL
	Step 1: Defining SCROL using Ontology Designer
	Step 2: Defining Conflict Controller, Original Context, and Target Context
	Step 3: Defining Ontology Relationship and Mapping Knowledge

	Application and Evaluation of SCROL
	Illustrative Examples to Demonstrate Application of SCROL
	Data Level Conflicts
	Schema Level Conflicts

	Evaluation of SCROL

	Contributions and Comparison with Other Approaches
	Conclusion and Future Research
	References

