
Classifying Schematic 
and Data Heterogeneity 
in Multidatabase Systems 

Won Kim and Jungyun Sea,* UniSQL, Inc. 

Schema and data 
conflicts between 

component databases 
are a crucial problem 

in building 
multidatabase systems. 
This article presents a 

comprehensive 
framework for 

classifying these 
conflicts. 

he proliferation of file systems, navigational database systems (hierarchi- 
cal and network). and relational database systems during the past three 
decades has created difficult problems arising from the need to access 

heterogeneous files and databases through a single data definition and query 
language designed under a single data model. This has been the primary motiva- 
tion for research into multidatabase systems’-h during the past 15 years. An MDBS 
is a federation of independently developed component database systems 
(CDBSs). The MDBS provides a homogenizing layer on top of the CDBSs, thus 
giving users the illusion of a homogeneous system. Because CDBSs operate 
independently (that is, without central control or distributed coordination), the 
component databases (CDBs) may include structural and representational dis- 
crepancies, or conflicts. called schematic and data heterogeneity. These conflicts 
must be resolved (homogenized) so MDBS users can access the underlying CDBs 
with a single uniform database language rather than a different database language 
for each CDB. 

Schematic and data heterogeneity is a crucial problem in building and using an 
MDBS. Surprisingly then. to the best of our knowledge, no framework exists for 
comprehensive enumeration and systematic classification of MDBS conflicts. 
There have been various proposals for MDBS data modeling and even database 
languages.’ 4.7-Y However, these proposals are based on fairly high-level and intu- 
itive understanding rather than detailed classification. One reason why MDBSs 
have failed to win marketplace acceptance is the absence of a comprehensive 
framework for understanding schematic and data heterogeneity among indepen- 
dently created and administered CDBs. Another is the absence of a practical 
solution for homogenizing this heterogeneity. 

Here we develop a complete framework for enumerating and classifying the 
types of MDBS structural and representational discrepancies. We believe such a 
framework is prerequisite to developing an MDBS schema definition and query 
language as well as tools for aiding multidatabase designers. The proposed frame- 

*Since collaborating on this article, Jungyun Sea has joined the Computer Science Department at the 
Korea Advanced lnstitute of Sconce and Technology m Daejon. 

12 



Table 1. Lihrarv schemas in cnmnnnent datahares. 
------.I ---------- 

--- _---- 
l- ------- 

---------_ 

Library Table name Attributes General description 

CDBl: Main 
(Main Library) item (i#*, title, author-name, subject, type, language) Library items 

lc-num (i#*, c-letter, f-digit, s-digit, cuttering) Library of Congress 
number  

publisher (i#*, name, tel, street, city, zip, state, country) Publishers 
lend-info (i#*, lend-period, l ibrary-use-only, checked-out)  Lending 

information 
checkout- info (i#*, id-num, hour, day, month, year) Borrower and  due 

date 

CDB2: Engineering 
(Engineering items (i#*, title, a-name, type, c-letter, f-digit, s-digit, 
Library) cuttering) Library items 

item-subject (i#*, subject) Subject of each item 
item-language (id#*, language) Language used in 

each item 
publisher (i#*, p-name, str-num, str-name, city, zip, state) Publishers 
lend-info (i#*, lend-period. library-use-only, checked-out) Lending 

information 
checkout-info (i#*, id-num, hour, day, month, year) Borrower and due 

date 

CDB3: City 
(City Public Library) books (i#*, lc-num, name, title, subject) Library items 

publisher (i#*, p-name, p-address) Publishers 
lend-info (i#*, l-period, reference, checked-out)  Lending 

information 
checkout- info (i#*, dl-num, day, month, year) Borrower and  due 

date 

CDB4: Comm 
(Community 
College Library) 

item (i#*, Ic-number, title, a-name) Library items 
publisher-info (i#*, p#*, name, tel) Publishers 
publisher-add (p#*, st-num, St-name. room-num, city. state, zip) Publisher address 
checkout-info (i#*, id, day, month, year) Borrower and due 

date 
Ic-num (i#*, category, user-name) Library card 

number 

“Indicates key attribute 

work is structured according to a rela- 
tional database schema. It is both prac- 
tical and complete. It was used to build 
the UniSQL/M commercial multidata- 
base system from UniSQL, Inc. This 
MDBS was built over Structured Query 
Language-based relational database 
systems and a unified relational and 
object-oriented database system named 
UniSQL/X. Its utility has been verified 
in this context. 

We  assume that the MDBS common 
data model is the relational model; that 
is, each of the CDB schemas is first 
converted to a semantically equivalent 
relational schema, and the multidata- 
base schema is constructed as a view of 

these relational CDB schemas. Howev- 
er, our results are substantially applica- 
ble to heterogeneous database systems 
that use a nonrelational data model 
(for example, an object-oriented data 
model) as the common data model and 
allow the formulation of queries direct- 
ly against the CDB schemas (for exam- 
ple, see Litwin et al.‘). 

Example mu ltidatabase 
scenario 

Let us assume that the main library of 
a university wishes to integrate the da- 

tabases of various libraries, such as the 
university’s engineering library. a city 
public library, and the library of a com- 
munity college. The database of each 
library has the schema definition shown 
in Table 1. Each database has a tag 
name, CDB,( 1 5 i 54). 

Although all these databases are de- 
signed for a library, they are indepen- 
dently designed and maintained and 
therefore differ in many ways. For ex- 
ample, the table name for general infor- 
mation about library items is itern in 
CDBl and CDB4, items in CDB2, and 
hooksin CDB3. Similarly, the table name 
for information about the publisher is 
publisher in CDBl, CDB2, and CDB3. 

December 1991 13 



Conflicts in a multidatabase system 
The schematic and data conflicts in an MDBS environment 

are mostly due to different symbolic representations for con- 
cepts in the component database systems. Since a database 
is defined by its schema and data, we classify conflicts at the 
highest level as either schema or data conflicts. Schema 
conflicts result from the use of different schema definitions in 
different CD&. Data conflicts are due to inconsistent data in 
the absence of schema conflicts. Figure 1 summarizes our 
framework for the enumeration and classification of MDBS 
schema and data conflicts. 

There are two basic causes of schema conflicts. First is 
the use of different structures (tables and attributes) for the 
same information. For example, some CDBs may represent a 
publishers address as an attribute, while others represent it 
in tables. Second is the use of different specifications for the 
same structure: these include different names, data types, 
and constraints for semantically equivalent tables and/or at- 
tributes. Because the relational model uses either tables or 
attributes to represent information, we can classify schema 
conflicts within this model completely by enumerating combi- 
nations of different structures used to represent information 
and all possible specifications of the structures. 

while CDB4 uses publisher-info. 
Further, the item tables in CDBl 
and CDB4 have different arities 
and different attributes: there are 
six attributes in CDBl, but four 
in CDB4. CDBl stores the Li- 
brary of Congress number for each 
item in a separate table, lc-num; 
in CDB4, it is an attribute, Ic- 
number. 

Further, some attributes have 
different names. For example, the 
attribute for the author’s name is 
called uuthor-name in CDBl, a- 
name in CDB2 and CDB4, and 
name in CDB3. The meanings of 
attributes with the same name also 
differ. The checkout-info table in 
CDB4containsinformation about 
the checkout date rather than the 
due date as in the other CDBs. 
Therefore, the meaning of the at- 
tributes Ray, month. and year in 
CDB4 differs from their mean- 
ings in the other CDBs. 

As these examples show, CDB 
users can express the same con- 
cept in different ways. Semanti- 
cally equivalent tables or at- 
tributes can have different names. 
structures. and data types. This 
makes it impossible for a query 
language such as SQL, designed 

14 

Table-versus-attribute conflicts result from the use of tables 
in some CDBs and attributes in others to represent the same 
information. Many-to-many table conflicts and many-to-many 
attribute conflicts are due to different numbers of tables or at- 
tributes representing the same information. Table-structure 
conflicts arise when semantically equivalent tables have dif- 
ferent structures (that is, different numbers and/or kinds of at- 
tributes). When all CDBs use the same structure for the same 
information, all user-definable elements within the structure 
can be enumerated and all conflicts classified as either one- 
to-one table conflicts or one-to-one attribute conflicts. 

Our classification of data conflicts enumerates possible 
sources of conflict. Broadly, there are two types of data con- 
flicts: (1) wrong data conflicts violate integrity constraints im- 
plicit in or explicitly specified in data and (2) conflicts based 
on different representations for the same data address all 
conflicts unrelated to integrity constraints. The latter type in- 
cludes the case of same representation for different data and 
can be further decomposed by enumerating ways of repre- 
senting the same data using different scalar values for each 
data type (for example, integer, real, string, date, and mone- 
tary unit). 

I. Schema Conflicts 
A. Table-versus-table conflicts 

1. One-to-one table conflicts 
a. Table name conflicts 

1) Different names for 
equivalent tables 

2) Same name for different tables 
b. Table structure conflicts 

1) Missing attributes 
2) Missing but implicit attributes 

c. Table constraint conflicts 
2. Many-to-many table conflicts 

B. Attribute-versus-attribute conflicts 
1. One-to-one attribute conflicts 

a. Attribute name conflicts 
1) Different names for 

equivalent attributes 
2) Same name for different attributes 

b. Default value conflicts 
c. Attribute constraint conflicts 

1) Data type conflicts 
2)Attribute integrity-constraint conflicts 

2. Many-to-many attribute conflicts 
C. Table-versus-attribute conflicts 

II. Data Conflicts 
A. Wrong data 

1. Incorrect-entry data 
2. Obsolete data 

B. Different representations for the same data 
(Same representation for different data) 
1. Different expressions 
2. Different units 
3. Different precisions 

Figure 1. Schema and data conflict classification. 

for a single database, to manip- 
ulate data in different CDBs. 
Database languages must be ex- 
tended so that users can define 
an MDBS schema and formu- 
late one query for n databases 
rather than n queries, one for 
each database. MSQL3 is an ear- 
ly proposal for such a database 
language. 

Schema conflicts 

Because we assume that all 
CDBs are in the relational mod- 
el, we use the data definition 
facility of the American Na- 
tional Standard Institute SQL 
syntax”‘t0 enumerate all items 
that can be defined differently 
and are therefore candidates 
for conflicts. Here. rather than 
enumerating all possible cases 
of conflicts, we classify the 
cases. 

The sidebar presents an over- 
view of our classification of 
MDBS schema and data con- 
flicts, and Figure 1 outlines it. 
The following sections provide 
more detailed descriptions of 
the classification elements. 

COMPUTER 



Table-versus-table conflicts. These 
conflicts occur when different CDBs 
use different definitions to represent 
information in tables (for example, dif- 
ferent names, structures, or constraints 
on the tables). Table-versus-table con- 
flicts can be decomposed into one-to- 
one table conflicts and many-to-many 
table conflicts. (We consider one-to- 
many table conflicts a special case of 
many-to-many table conflicts. 

One-to-one tableconflicts. These con- 
flicts can occur when CDBs represent 
the same information in single tables 
using different names, structures, and 
constraints. We can enumerate all cases 
of this conflict type by enumerating all 
user-definable items in the SQL lan- 
guage table definitions. Thus, one-to- 
one table conflicts are further decom- 
posed into table name conflicts, table 
structure conflicts, and table constraint 
conflicts: 

l Tablename conj7icts. These conflicts 
arise due to different names assigned to 
tables in different CDBs. There are two 
types: conflicts due to the use of differ- 
ent names for semantically equivalent 
tables and conflicts due to the use of the 
same name for semantically different 
tables. The library scenario included 
examples of both cases. 

l Tablestructure conflicts. These con- 
flicts arise from differences in the num- 
ber of attributes in CDB tables, that is, 
when a table in one CDB is missing 
some attributes in a corresponding ta- 
ble in another CDB. A CDB table is not 
union-compatible with corresponding 
tables in other CDBs if it is missing 
some attributes. There are two inter- 
pretations for missing attributes: The 
attributes are indeed missing, or the 
missing attributes are implicit and can 
thus be deduced. For example, since 
there are different types of library items 
(such as books, cartographic material, 
film, and sound recordings), the item 
tables in CDBl and CDB2 have an at- 
tribute type to specify the type of a 
library item. However, since all items in 
CDB4 are books, the item table in CDB4 
does not need an attribute for the type 
of items; that is, the implicit attribute 
type has the default value book. 

l Tableconstraintconflicts. Thesecon- 
flicts arise from differences in the spec- 
ifications of table constraints. SQL pro- 
vides four alternatives specifications: 
candidate key definition, primary key 

December 1991 

~ 

Figure 2. Table definition with two Check conditions. 

definition, foreign key definition, and 
check condition. Thus, this conflict type 
includes four subcategories. Unlike oth- 
er constraints, which cause difficulties 
in the formulation of queries or in the 
definition of views involving multiple 
CDBs, constraint conflicts (including 
attribute constraint conflicts, which are 
discussed later) can cause difficulties 
with simultaneous updates to multiple 
CDBs. For example, if an attribute is a 
key attribute in one CDB, but the corre- 
sponding attribute in another CDB is 
not key, it is difficult to impose the key 
constraint on the attribute at the MDBS 
level. 

Any of the three key definition con- 
straint types (candidate, primary, or 
foreign) is defined on one or a combina- 
tion of table attributes. Even if the key 
constraint is defined on just one table 
attribute, it applies collectively to all 
records of the table. Therefore, we sim- 
ply classify key constraints as table-lev- 
el conflicts. The check condition can 
also be specified either as one or a set of 
attributes. However, we regard check 
conditions that are defined on a single 
attribute as attribute constraint conflicts. 
For example, consider the definition in 
Figure 2 of the item table with two check 
conditions. The first check clause, re- 
ferring to multiple attributes, is a table- 
level constraint. However, the second 
check clause, for the attribute item. title, 
applies to only a single attribute. 

Many-to-many table conflicts. These 
conflicts occur when CDBs use differ- 
ent numbers of tables to represent the 
same information. Since CDB users may 
define tables in different ways for vari- 
ous reasons - to remove redundant 
data, to reduce the possibility of incon- 
sistencies when deleting and inserting 
records, etc. -this type of conflict can 
occur frequently in an MDBS. For ex- 
ample, in our library scenario, CDBl 
uses two tables, item and lc-num, for 
general information on each library item, 

while CDB2 uses three tables: items, 
subject, and language. 

Some conflicts may combine many- 
to-many table conflicts with subcatego- 
ries of one-to-one table conflicts (that 
is, table name conflicts, table structure 
conflicts, and table constraint conflicts). 
However, separate categories are not 
required for such compound conflicts 
because they can be decomposed into 
basic conflicts and handled with the cor- 
responding tools (see “Compound con- 
flicts” sidebar on next page). 

Attribute-versus-attribute conflicts. 
These conflicts are caused by different 
definitions for semantically equivalent 
attributes in different CDBs, including 
different names, attribute data types, 
and integrity constraints. Like the ta- 
ble-versus-table conflicts, these conflicts 
can be decomposed into one-to-one and 
many-to-many conflicts. 

One-to-one attribute conflicts. These 
are due to different definitions for se- 
mantically equivalent attributes in dif- 
ferent tables. The attribute definition 
consists of the attribute name, data type, 
constraints, and a default value. Since 
the data-type specification for an at- 
tribute is a special case of its constraint 
definition, we decompose one-to-one 
attribute conflicts into attribute name 
conflicts, default value conflicts, and 
attribute constraint conflicts. 

l Attribute name conflicts. Attribute 
name conflicts are similar to the table 
name conflicts discussed earlier. There 
are two types: one arising from the use 
of different names for semantically 
equivalent attributes in different CDBs 
and the other arising from the use of the 
same name for semantically different 
attributes. (Again, the library schema 
includes examples of these cases.) The 
latter type is often caused by the use of 
incompletely specified names. For ex- 
ample, one CDB uses an attribute name 

15 



.salary for gross salary, and another CDB 
uses the same name for net salary. Sim- 
ilarly, the attribute name price may rep- 
resent the price including tax in one 
CDB and the price before tax in other 
CDBs. 

l Lkfrrzrlr VN/~W con,f/ic/s. This conflict 
type. like constraint conflicts, can man- 
ifest itself during update. For example. 
suppose that the default value of the 
attribute slrhjecr in the CDB2 item table 
is “applied-science.” while it is null in 
CDBl If “applied science” is chosen as 
the default in the MDBS view. the addi- 
tion of an “applied science” book to 
CDBI. without an explicit specification 
for the value of the subject attribute. 
may result in a record with a null value 
(this conflict can be prevented). 

l Attrihute corzstraint con,fLicts. These 
conflicts are further decomposed into 
data type and attribute integrity-con- 
straint conflicts. Dala fype conflicfs oc- 
cur when semantically equivalent at- 
tributes in different CDBs have different 
data types. For example, the data type 
of the attribute z@ in the CDBI pub- 
lisher table is defined as Char(S), while 
that of the corresponding attribute in 
CDB2 is defined as Integer. Attrihutr 
integrity-cmstraint corzflicts are similar 
to default value conflicts. Any conflict 
due to different definitions of attribute 
integrity constraints defined by a Check 
clause is classified as an attribute con- 
straint conflict. For example. suppose 
that the attributef-digir of the CDBI Is- 
num table is defined as an integer I 
YYYY, while the corresponding attribute 
in CDB2 is defined as an integer < 999. 
Then, depending on which constraint is 
adopted in the MDBS view, an attempt 
to add a record with an f-digit value of 
2120 to both CDBs simultaneously may 
or may not succeed in CDBZ. 

Many-to-nzany attribute conflicts. An 
example of this conflict type occurs in 
the library scenario where the street 
addresses of publishers are represented 
in CDBl in one attribute. street. in the 
publisher table. while the same infor- 
mation is represented in two attributes. 
str-?zzznz andstr-trnnrc. in the CDB2 pub- 
lisher table. 

As remarked for many-to-many table 
conflicts, these conflicts may combine 
many-to-many attribute conflicts with 
subcategories of one-to-one attribute 
conflicts (that is. attribute name con- 
flicts. default value conflicts, and at- 
tribute constraint conflicts). Again, there 

Compound conflicts 

Interesting compound conflicts occur in practice. We regard them as combina- 
tions of different conflict types in our classification schema. This approach makes 
it possible to classify arbitrarily complex conflicts. For example, suppose that we 
add to our library scenario another library database as follows: 

CDBS: Art (Art-Library) 
item(i#, title, author-name, subject, type, language) Library items 
Ic-num(i#, category, number, cuttering) Library of 

Congress 
number 

Then a query such as “Select the titles, Library of Congress numbers, subjects, 
and, if available, languages of all library items from CDBP, CDB3, and CD&Y will 
need to overcome several different conflict types, A table-versus-attribute conflict 
‘occurs because CDB3 represents the Library of Congress number as an at- 
tribute, Ic-num, while CDB5 represents it as a table, Ic-num. A many-to-many at- 
tribute conflict occurs because CD85 uses three attributes - category, number, 
and cuttering -to represent the Library of Congress number; CDB2 uses four 
attributes - c-letter, f-digit, s-digit, and cuttering; and CD63 uses one attribute, 
Ic-num. 

A many-to-many table conflict occurs because CDB2 uses three tables for li- 
brary items, while CD65 uses two tables and CDS3 uses only one. A table name 
conflict, table structure conflict, and attribute name conflict also occur. 

A potentially troublesome situation arises when CDBs contain similar, but not 
identical, data. For example, consider an MDBS that consists of CDB20 and 
CD621 as follows: 

CDBPO: restaurant(Rest-name, type, city) 
CD621 : restaurant(Rest-name, type, county) 

Handling a query such as “Select the names of all French restaurants in Travis 
County from CDBW and CDB21” is not trivial. A city and a county may have an 
inclusion relation (that is, city c county), so the answer to the query must include 
French restaurants in Travis County cities such as Austin, Bastrop, and West- 
lake. This is different from conflicts related to the semantics of CDB symbols. 
Clearly, the meanings of data for the attributes city and county are different. Be- 
cause the restaurant tables have different attributes, this conflict is, in a sense, a 
table structure conflict between CD620 and CDB21. On the other hand, to classi- 
fy this conflict as simply one type of table structure conflict does not take into ac- 
count information implicit in the related attributes. The problem inherent in this 
situation is the existence of semantic relationships among attributes in CDBs. 
fiowever, we do not believe that such relationships should be regarded as MDBS 
conflicts. 

is no need for separate categories for 
such compound conflicts: they can be 
decomposed into several types of basic 
conflicts. 

Table-versus-attribute conflicts. 
These conflicts occur if some CDBs use 
tables and others use attributes to rep- 
resent the same information. In the li- 
brary scenario, CDB3 uses an attribute, 
p-address, in the publisher table to rep- 
resent the publisher’s address. while 
CDB4 represents the same information 

in the publisher-add table. This conflict 
type can be regarded as a combination 
of many-to-many table conflicts and 
many-to-many attribute conflicts. It is 
an example of a table-versus-attribute 
conflict. 

Data conflicts 

Thus far, our discussion has focused 
on schema conflicts. In this section. we 
examine the two types of data conflicts 

16 COMPUTER 



listed in Figure 1: wrong 
ent representations. 

data and differ- conflict, as in the third example under 
“Different expressions.” 

Wrong data. One type of wrong data 
conflict is due generally to failures in 
maintaining a database, such as failing 
to keep the database up to date and to 
enforce integrity constraints. We call 
this type incorrect-entry data. It occurs 
when equivalent attributes in different 
CDBs, which are expected to have the 
same value, have different values. For 
example, if the birth date of an employ- 
ee in one CDB is different from that ol 
the same person in other CDB, an MDBS 
query for the person’s birth date will 
return a wrong answer. (We assume 
that the “same data” in different CDBs 
are identifiable through user-defined 
key attributes.) 

Another type of wrong data is ohso- 
letr data. For example, two CDBs of a 
company might have different salary 
data for the same employee because 
one salary has not been updated. An- 
other interpretation of this conflict is 
that one salary is for one job the em- 
ployee performs and the other salary is 
for a different job performed by the 
same employee. However, we regard 
this possibility as an attribute name con- 
flict. 

Different representations for the same 
data. There are three different aspects 
to the representation of data across 
CDBs: expressions, units, and precision. 

Different expressiom. Conflicts in 
expressions arise between two CDBs 
when both use the same type of data or 
different types of data. The following 
examples show various expressions for 
the same data: 

l Different words for the same data: 
Texas, TX. TX 

. Different strings for the same data: 
9390 Research Blvd. Ste. 220, Aus- 
tin, TX 
9390 Research Boulevard. Suite 
#220, Austin, Texas 

l Different codes for the same data: 
*****, A. Excellent. 1,s 
+a*‘+, B, Good, 2. 4 

L1’*, C. Fair, 3, 3 
:**, D. Poor, 4,2 
*- E, Bad, 5, 1 

The third example illustrates the con- 
flict that occurs when different types 
of values are used in CDBs for the 

Different expressions, 
units, and precision 
result in conflicting 

representations of the 
same data across CDBs. 

same data: for example, where some 
CDBs use strings, while others use in- 
tegers. 

Different units. These conflicts arise 
when two CDBs use different units for 
numeric data. Different units give dif- 
ferent meanings to numeric values. For 
example, suppose that CDBl expresses 
the lend-period attribute in the lend- 
info table in terms of days (for example. 
1 to 28 days) and CDB2 expresses the 
same attribute in weeks (for example, 1 
to 4 weeks). Then even if the CDBs 
have the same number. say 2, as the 
attributevalue, the meaning of the num- 
bers is different in each CDB. 

In a sense, this conflict type can be 
regarded as an attribute name conflict. 
Thus. if a fully qualified name is used 
for each attribute (such as lend-period- 
in-days or lend-period-in-weeks). the 
attributes in different units can be re- 
garded as distinct attributes. However. 
we regard attributes in different units as 
carrying semantically equivalent infor- 
mation. 

Differetztprecisions. Conflicts in pre- 
cision occur when two CDBs use values 
from the domains of different cardinal- 
ities for the same data. For example, 
suppose that the data type of an at- 
tribute wright-of-ship in CDB 10 is de- 
fined as (heavy. middle, light.ultra-light], 
while that of the same attribute in CDB 1 I 
is defined as Integer with tons as the 
unit. Then, the domain size of the value 
for weight-of-ship in CDBIO is four: 
while that of CDBI 1 may be a million 
(that is, any integer between 1 and 
1.000,000). 

We note that when different CDBs 
use different values from domains with 
the same cardinalities, they are in ex- 
pressions conflict rather than precisions 

T his framework provides for 
comprehensive enumeration 
and classification of schema 

and data conflicts among component 
relational databases organized into a 
multidatabase system. We derived the 
classification of schema conflicts from 
an enumeration of all possible conflict 
sources based on the ANSI-SQL rela- 
tional database language. We developed 
the classification of data conflicts by 
examining the sources of different rep- 
resentations for the same data. 

Our approach to addressing schemat- 
ic heterogeneity is to define views on 
the schemas of more than one compo- 
nent database and to formulate queries 
against the views. The view definition 
can specify how to homogenize the sche- 
matic heterogeneity in CDBS views. Our 
approach to data heterogeneity is two- 
fold: First, we allow the MDBS query 
processor to issue warnings when it de- 
tects wrong-data conflicts in query re- 
sults. Second, we allow the MDBS users 
and/or database administrator to pre- 
pare and register lookup tables in the 
database so that the MDBS query pro- 
cessor can match different representa- 
tions of the same data. 

We note that fully satisfactory solu- 
tions to many-to-many table conflicts 
require significant additional research. 
It is often possible to reduce many-to- 
many table conflicts to one-to-one table 
conflicts by converting multiple tables 
to a single table in each CDB. However. 
in general. the conversion of a set of 
tables in one CDB into a semantically 
equivalent set in another CDB is a very 
involved process. It requires a set of 
standard relational and conflict-homog- 
enizing operations at both the table and 
attribute level. Even then, it introduces 
problems of incomplete information and 
null values in the CDBs.” 

Our classification framework assumes 
that the schemas of all underlying com- 
ponent databases have been converted 
to equivalent schemas in the standard 
relational data model. A more natural 
and powerful common model is the ob- 
ject-oriented data model, which includes 
such concepts as generalization, aggre- 
gation, inheritance, and methods. The 
development of an MDBS based on an 
object-oriented data model is an excit- 
ing new research area. H 

December 1991 I7 



Acknowledgments 
We thank the anonymous referees who offered many insightful 

suggestions that helped us improve the technical accuracy and pre- 
sentation of this article. 

References 
1. Y. Breitbart, P.L. Olson, and G.R. Thompson, “Database Inte- 

gration in a Distributed Heterogeneous Database System,” Proc. 
Second IEEE Data Eng. Con$, CS Press, Los Alamitos, Calif., 
Order No. 655,1986, pp. 301-310. 

2. U. Dayal and H. Hwang, “View Definition and Generalization 
for Database Integration in a Multidatabase System,” ZEEE 
Trans. Software Eng., Vol. SE-IO, No. 6, Nov. 1984, pp. 628-645. 

3. T. Landers and R.L. Rosenberg, “An Overview of Multibase,” in 
Distributed Databases, H.J. Schneider, ed., North Holland, The 
Netherlands, 1982, pp. 153-184. 

4. W. Litwin et al., “MSQL: A Multidatabase Language,” Informa- 
tion Sciences, Vol. 49, June 1987. 

5. W. Litwin, L. Mark, and N. Roussopoulos, “Interoperability of 
Multiple Autonomous Databases,” ACM Computing Surveys, 
Vol. 22, No. 3, Sept. 1990, pp. 267-293. 

6. Y.R. Wang and S.E. Madnick, “A Polygen Model for Heteroge- 
neous Database Systems: The Source Tagging Perspective,” P&c. 
16th VLDB Conf., Morgan Kaufman. Palo Alto. Calif.. 1990, DO. 
519-538. . ” 

. . 

The U.S. West Land-Grant Chair 
in Telecommunications 

The Department of Computer Science invites applica- 
tions and nominations for a new chair endowed by U.S. 
West Communications and U.S. West Advanced Tech- 
nologies at the full professor rank. The holder ofthis Chair 
will provideleadershipforthedevelopmentofanationally 
recognized program of research, instruction, and indus- 
trial collabdrat’~n in the areas of software’technology 
applied to integrated broadband communications and 
cbmputing en;ironments, network architecture and 
protocol design, interconnection of local area networks, 
performance analysis and modeling of communication 
systems, and multi-media applications. TheChair holder 
may also hold a joint appointment in the Electrical 
Engineering Department. Applicants must have an out- 
standing research record, a commitment to teaching, and 
a demonstrated record of industrial collaboration.- 

Interested persons should contact Professor David Du. 
Chair of the U.S. West Land-Grant Chair Search Commit: 
tee, Department of Computer Science, University of 
Minnesota, 200 Union St&et LE., Minneapolis, Minne- 
sota 55455. E-mail address du@cs.umn.edu. Deadline 
for nominations and applications is January 31,1992. 

The University 
employer. 

of Minnesota is an opportunity educator and 

7. C. Batini, M. Lenzerini, and S. Navathe, “A Comparative Anal- 
ysis of Methodologies for Database Schema Integration,” ACM 
Computing Surveys, Vol. 18, No. 4, Dec. 1986, pp. 323-364. 

8. L. DeMichiel, “Performing Operations over Mismatched Do- 
mains,” Proc. Fifth IEEE Data Eng. Conf, CS Press, Los Alam- 
itos, Calif., Order No. 1915, 1989, pp. 36-45. 

9. S. Hayne and S. Ram. “Multi-User View Integration System 
(MUVIS): An Expert System for View Integration,” Proc. Sixth 
IEEE Data Eng. Conf., CS Press, Los Alamitos, Calif., Order No. 
2025, Feb. 1990, pp. 402-409. 

10. American National Standards Institute, “Database Language - 
SQL with Integrity Enhancement,” Tech. Report X3.135-1989, 
ANSI, New York, 1989. 

11. T. Imielinski and W. Lipski, “Incomplete Information in Rela- 
tionalDatabases,“J.ACM,Vol.31,No.4,Oct. 1984,pp.761-791. 

Won Kim is the founder and president of UniSQL, Inc., a database 
corporation in Austin, Texas. Before founding that company, he was 
director of the Object-Oriented and Distributed Systems Laborato- 
ry at Microelectronics and Computer Technology Corp., where he 
was the chief architect of the Orion series of object-oriented data- 
base systems. 

Kim received a PhD in computer science from the University of 
Illinois at Urbana-Champaign. His dissertation was on query pro- 
cessing in relational database systems. He is the author of Introduc- 
tion to Object-Oriented Databases (MIT Press, 1990). He currently 
chairs ACM SIGMOD and serves on the editorial boards of ACM 
Transactions on Database Systems, Communications of the ACM, 
IEEE Transactions on Knowledge and Data Engineering, and IEEE 
Data Engineering Bulletin. 

Jungyun Seo is an assistant professor in the Computer Science 
Department at the Korea Advanced Institute of Science and Tech- 
nology in Daejon. Previously, he was a member of technical staff at 
UniSQL, Inc., Austin, Texas. His research interests include natural 
language processing, artificial intelligence, and knowledge-based 
semantic analysis in distributed query processing. 

Seo obtained a BA in mathematics from Sogang University in 
Seoul, Korea, and an MS and PhD in computer science from the 
University of Texas, Austin. 

Readers can contact Albert D’Andrea, UniSQL, Inc., 9390 Re- 
search Blvd., Austin, TX 78759, e-mail execu!sequoia!unisql! 
albert@cs.utexas.edu. 

COMPUTER 


